Comparing skew Schur functions: a quasisymmetric perspective

Peter McNamara Bucknell University

CMS Winter Meeting 8 December 2013

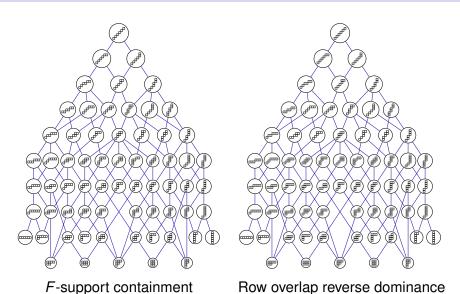
Slides and paper available from

www.facstaff.bucknell.edu/pm040/

Outline

- ► The background story: the equality question
- Conditions for Schur-positivity
- Quasisymmetric insights and the big conjecture
- Relationship to other (quasi)symmetric bases

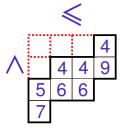
Preview



Comparing skew Schur functions guasisymmetrically

Skew Schur functions

- ► Skew shape A
- ► e.g. A = 4431/31
- Semistandard Young tableau (SSYT)

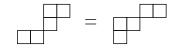


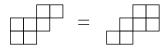
The skew Schur function s_A in the variables $x = (x_1, x_2, ...)$ is then defined by

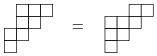
$$s_A = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots$$

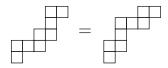
$$s_{4431/31} = x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$$

Question. When is $s_A = s_B$?









Question. When is $s_A = s_B$?

Definition.

A ribbon is a connected skew shape containing no 2×2 rectangle.

Question. When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question. When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question. When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions.

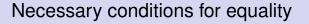
Question. When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions.

- ▶ Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- ► McN., Steph van Willigenburg (2006)
- Christian Gutschwager (2008) solved multiplicity-free case

Open Problem. Find necessary and sufficient conditions on A and B for $s_A = s_B$.

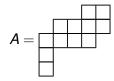


General idea: the overlaps among rows must match up.

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

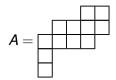


General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

Example.

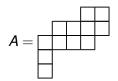


• overlap₁(i) = length of the ith row. Thus rows₁(A) = 44211.

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

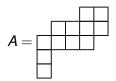


- overlap₁(i) = length of the ith row. Thus rows₁(A) = 44211.
- ▶ overlap₂(1) = $\frac{2}{2}$, overlap₂(2) = $\frac{3}{2}$, overlap₂(3) = $\frac{1}{2}$, overlap₂(4) = $\frac{1}{2}$, so rows₂(A) = $\frac{3211}{2}$.

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

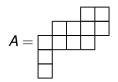


- overlap₁(i) = length of the ith row. Thus rows₁(A) = 44211.
- ▶ overlap₂(1) = $\frac{2}{2}$, overlap₂(2) = $\frac{3}{2}$, overlap₂(3) = $\frac{1}{2}$, overlap₂(4) = $\frac{1}{2}$, so rows₂(A) = $\frac{3211}{2}$.
- $rows_3(A) = 11$.

General idea: the overlaps among rows must match up.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let $\operatorname{overlap}_k(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.

Then $\operatorname{rows}_k(A)$ is the weakly decreasing rearrangement of $(\operatorname{overlap}_k(1), \operatorname{overlap}_k(2), \ldots)$.

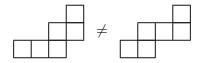


- overlap₁(i) = length of the ith row. Thus rows₁(A) = 44211.
- ▶ overlap₂(1) = $\frac{2}{2}$, overlap₂(2) = $\frac{3}{2}$, overlap₂(3) = $\frac{1}{2}$, overlap₂(4) = $\frac{1}{2}$, so rows₂(A) = $\frac{3211}{2}$.
- $rows_3(A) = 11$.
- ▶ $rows_k(A) = \emptyset$ for k > 3.

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then $rows_k(A) = rows_k(B)$ for all k.

Theorem [RSvW]. Let A and B be skew shapes. If $s_A = s_B$, then $rows_k(A) = rows_k(B) \text{ for all } k.$

Converse is not true:



Schur-positivity order

Our interest: inequalities.

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/ au}$ Schur-positive?

Schur-positivity order

Our interest: inequalities.

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive?

Definition. Let A, B be skew shapes. We say that

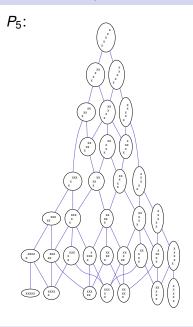
$$A \ge_{\mathcal{S}} B$$
 if $s_A - s_B$ is Schur-positive.

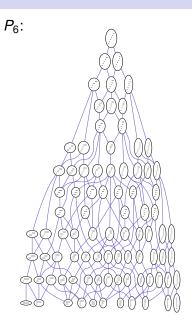
Original goal: characterize the Schur-positivity order \geq_s in terms of skew shapes.

Example of a Schur-positivity poset

If $B \leq_s A$ then |A| = |B|. Call the resulting ordered set P_n . Then P_4 : ф \prod H

More examples

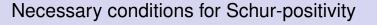




Known properties: Sufficient conditions

Sufficient conditions for $A \ge_s B$:

- ► Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- ► Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- Anatol N. Kirillov (2004)
- Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- ► François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
- McN., Steph van Willigenburg (2009, 2012)
- **...**



Notation. Write $\lambda \leq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all *i*.

Notation. Write $\lambda \leq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all i .

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_A - s_B$ is Schur-positive, then

$$rows_k(A) \leq rows_k(B)$$
 for all k .

Notation. Write $\lambda \leq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all i .

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_A - s_B$ is Schur-positive, then

$$rows_k(A) \leq rows_k(B)$$
 for all k .

In fact, it suffices to assume that $supp_s(A) \supseteq supp_s(B)$.

Notation. Write $\lambda \leq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$\lambda_1 + \cdots \lambda_i \leq \mu_1 + \cdots + \mu_i$$
 for all *i*.

Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_A - s_B$ is Schur-positive, then

$$rows_k(A) \leq rows_k(B)$$
 for all k .

In fact, it suffices to assume that $supp_s(A) \supseteq supp_s(B)$.

Example.

$$A = B = B$$

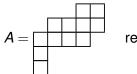
$$S_A = S_{41} + S_{32} + 2S_{311} + S_{221} + S_{2111}$$

$$S_B = S_{41} + 2S_{32} + S_{311} + S_{221}$$

So $s_A - s_B$ is not Schur-positive but $supp_s(A) \supseteq supp_s(B)$.

Equivalent to row overlap conditions

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.



$$rects_{3,1}(A) = 2$$
, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- ▶ $rows_k(A) = rows_k(B)$ for all k;
 - ▶ $cols_{\ell}(A) = cols_{\ell}(B)$ for all ℓ ;
 - ▶ $\operatorname{rects}_{k,\ell}(A) = \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Equivalent to row overlap conditions

Let $\operatorname{rects}_{k,\ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.

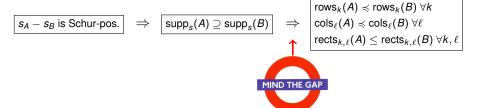
$$rects_{3,1}(A) = 2$$
, $rects_{2,2}(A) = 3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

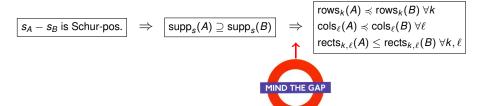
- $ightharpoonup \operatorname{rows}_k(A) = \operatorname{rows}_k(B) \text{ for all } k;$
- ▶ $cols_{\ell}(A) = cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) = \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

Theorem [McN]. Let A and B be skew shapes. TFAE:

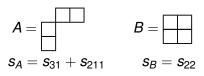
- ▶ $rows_k(A) \leq rows_k(B)$ for all k;
- ▶ $cols_{\ell}(A) \leq cols_{\ell}(B)$ for all ℓ ;
- ▶ $\operatorname{rects}_{k,\ell}(A) \leq \operatorname{rects}_{k,\ell}(B)$ for all k, ℓ .

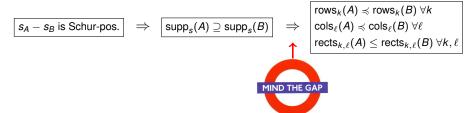


Converse is very false.



Converse is very false.





Converse is very false.

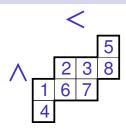
Example.

$$A =$$
 $B =$ $B =$ $S_A = S_{31} + S_{211}$ $S_B = S_{22}$

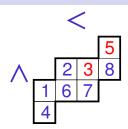
New Goal: Find weaker algebraic conditions on *A* and *B* that imply the overlap conditions.

What algebraic conditions are being encapsulated by the overlap conditions?

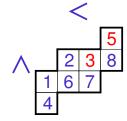
- ► Skew shape A.
- ▶ SYT *T* of *A*.



- Skew shape A.
- ▶ SYT *T* of *A*.
- ▶ Descent set S(T) = {3,5}.
- Descent composition comp(T) = 323.



- Skew shape A.
- ▶ SYT *T* of *A*.
- ▶ Descent set $S(T) = \{3, 5\}.$
- Descent composition comp(T) = 323.

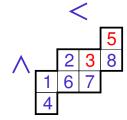


Then s_A expands in the basis of fundamental quasisymmetric functions as

$$s_A = \sum_{\mathsf{SYT} \ T} F_{\mathsf{comp}(T)}.$$

$$s_{4431/31} = F_{323} + \cdots$$
.

- Skew shape A.
- ▶ SYT *T* of *A*.
- ▶ Descent set $S(T) = \{3, 5\}.$
- Descent composition comp(T) = 323.



Then s_A expands in the basis of fundamental quasisymmetric functions as

$$s_A = \sum_{\text{SYT}, T} F_{\text{comp}(T)}.$$

Example.

$$s_{4431/31} = F_{323} + \cdots$$

Facts.

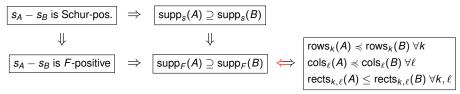
- ▶ The *F* form a basis for the quasisymmetric functions.
- ▶ So notions of F-positivity and F-support make sense.
- Schur-positivity implies F-positivity.
- ▶ $supp_s(A) \supseteq supp_s(B)$ implies $supp_F(A) \supseteq supp_F(B)$

New results: filling the gap

Theorem. [McN. (2013)]

New results: filling the gap

Theorem. [McN. (2013)]



Conjecture. The rightmost implication is iff.

New results: filling the gap

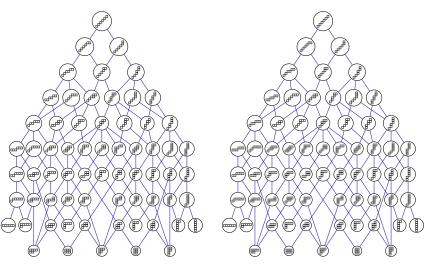
Theorem. [McN. (2013)]

Conjecture. The rightmost implication is iff.

Evidence. Conjecture is true for:

- n < 12;</p>
- horizontal strips;
- F-multiplicity-free skew shapes (as determined by Christine Bessenrodt and Steph van Willigenburg (2013));
- ribbons whose rows all have length at least 2.

n = 6 example

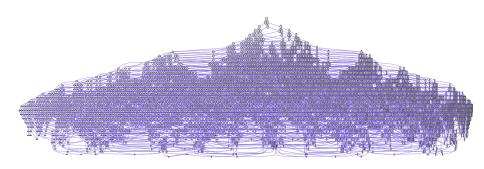


F-support containment

Row overlap reverse dominance

n = 12

n = 12 case has 12,042 edges.



Adding other bases

Adding other bases

$$\begin{array}{c} s_{A}-s_{B} \text{ is } D\text{-positive} \\ \\ \downarrow \\ s_{A}-s_{B} \text{ is Schur-pos.} \\ s_{A}-s_{B} \text{ is } S\text{-positive} \end{array} \Rightarrow \begin{array}{c} \text{supp}_{D}(A) \supseteq \text{supp}_{D}(B) \\ \text{supp}_{S}(A) \supseteq \text{supp}_{S}(B) \\ \text{supp}_{S}(A) \supseteq \text{supp}_{S}(B) \end{array}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \\ s_{A}-s_{B} \text{ is } F\text{-positive} \Rightarrow \begin{array}{c} \text{rows}_{k}(A) \preccurlyeq \text{rows}_{k}(B) \ \forall k \\ \text{cols}_{\ell}(A) \preccurlyeq \text{cols}_{\ell}(B) \ \forall k \\ \text{rects}_{k,\ell}(A) \le \text{rects}_{k,\ell}(B) \ \forall k,\ell \end{array}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Thanks! Merci!