The Schur-Positivity Poset

Peter McNamara Bucknell University

Joint work with Stephanie van Willigenburg

AMS Special Session on Combinatorics of Partially Ordered Sets Claremont McKenna College 3 May 2008

Slides and paper available from

www.facstaff.bucknell.edu/pm040/

Outline

- Introduction to the Schur-positivity poset
- Some relevant results
- Restriction to multiplicity-free ribbons
- Lattice structure in more detail

Preview

$$n = 4$$

Schur functions

- ▶ Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- Young diagram. Example: $\lambda = (4, 4, 3, 1)$

Schur functions

- ▶ Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- Young diagram. Example:

$$\lambda = (4, 4, 3, 1)$$

Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x=(x_1,x_2,...)$ is then defined by

$$s_{\lambda} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots.$$

Example

$$s_{4431} = x_1 x_3^2 x_4^4 x_5 x_6^2 x_7 x_9 + \cdots$$

Skew Schur functions

- ▶ Partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$
- $\blacktriangleright \mu$ fits inside λ .
- Young diagram. Example:

$$\lambda/\mu = (4,4,3,1)/(3,1)$$

Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda/\mu}$ in the variables $x=(x_1,x_2,\ldots)$ is then defined by

$$s_{\lambda/\mu} = \sum_{\text{SSYT } T} x_1^{\#1\text{'s in } T} x_2^{\#2\text{'s in } T} \cdots.$$

Example

$$s_{4431/31} = x_4^3 x_5 x_6^2 x_7 x_9 + \cdots$$

Some reasons why we care

- Skew Schur functions are symmetric in the variables $x = (x_1, x_2,...)$.
- ► The Schur functions form a basis for the algebra of symmetric functions (over ℚ, say).
- Connections with Algebraic Geometry, Representation Theory.

Schur-positivity

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

Littlewood-Richardson rule:

 $c_{\mu\nu}^{\lambda}$ is the number of SSYT of shape λ/μ and content ν whose reverse reading word is a ballot sequence.

Key: $c_{\mu\nu}^{\lambda} \geq 0$.

 $s_{\lambda/\mu}$ is Schur-positive (i.e. coefficients in Schur expansion are all non-negative).

Connection between Schur-positivity and representation theory of S_n .

Big Question

$$s_{\lambda/\mu} = \sum_{
u} c_{\mu
u}^{\lambda} s_{
u}.$$

Big Question

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/ au}$ Schur-positive?

Big Question

$$s_{\lambda/\mu} = \sum_{
u} {m{c}_{\mu
u}^{\lambda}} s_{
u}.$$

When is $s_{\lambda/\mu} - s_{\sigma/\tau}$ Schur-positive?

Definition

Let A, B be skew shapes. We say that

$$A \leq_s B$$
 if $s_B - s_A$

is Schur-positive.

Goal: Characterize the Schur-positivity order \leq_s in terms of skew shapes.

Example

First things first

 \leq_{s} is not yet anti-symmetric. So identify skew shapes such as

First things first

 \leq_{s} is not yet anti-symmetric. So identify skew shapes such as

Definition

A ribbon is a connected skew shape containing no 2×2 rectangle.

Indexed as 21231 and 23121.

Question: When is $s_A = s_B$?

▶ Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

Question: When is $s_A = s_B$?

► Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

- ► Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- ► McN., Steph van Willigenburg (2006)

Enough for our purposes: we can consider P_n to be a poset.

Relevant results: Necessary or sufficient conditions

Sufficient conditions for $A \leq_s B$:

- ► A. Lascoux, B. Leclerc, J.-Y. Thibon (1997)
- A. Okounkov (1997)
- S. Fomin, W. Fulton, C.-K. Li, Y.T. Poon (2003)
- ► A.N. Kirillov (2004)
- T. Lam, A. Postnikov, P. Pylyavskyy (2005)
- F. Bergeron, R. Biagioli, M. Rosas (2006)
- **.**..

Necessary conditions for $A \leq_s B$:

► McN. (2007)

Relevant results: special classes of skew shapes

Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, A ≤_s B if and only if

row lengths of $A \ge$ row lengths of B

in dominance order.

 P_n restricted to horizontal strips: (dual of the) dominance lattice.

Relevant results: special classes of skew shapes

Macdonald's "Symmetric functions and Hall polynomials": For horizontal strips, A ≤_s B if and only if

row lengths of $A \ge$ row lengths of B

in dominance order.

 P_n restricted to horizontal strips: (dual of the) dominance lattice.

► Ron King, Trevor Welsh, Steph van Willigenburg (2007): For ribbons with decreasing row lengths and equal numbers of rows, same is true.

Suffices to fix #boxes and #rows.

Suffices to fix #boxes and #rows.

Good news: (McN., van Willigenburg 2007) Ribbons(n, r) is a convex subposet of P_n .

Suffices to fix #boxes and #rows.

Good news: (McN., van Willigenburg 2007) Ribbons(n, r) is a convex

subposet of P_n .

Bad news: Ribbons(9,4):

Suffices to fix #boxes and #rows.

Good news: (McN., van Willigenburg 2007) Ribbons(n, r) is a convex

subposet of P_n .

Bad news: Ribbons(9, 4):

Crux of the matter: What's a feasible yet interesting subposet?

Multiplicity-free ribbons

Definition

A skew shape A is said to be multiplicity-free if, when s_A is expanded as a linear combination of Schur functions, each coefficient is 0 or 1.

Question: When is a ribbon A multiplicity-free?

Multiplicity-free ribbons

Definition

A skew shape A is said to be multiplicity-free if, when s_A is expanded as a linear combination of Schur functions, each coefficient is 0 or 1.

Question: When is a ribbon A multiplicity-free?

Answer: (Thomas-Yong 2005, Gutschwager 2006) When *A* has at most two rows with more than one box, and at most two columns with more than one box.

Multiplicity-free Schur expansions correspond to multiplicity-free representations; survey article by Roger Howe.

Subposet of multiplicity-free ribbons

Theorem (roughly stated) (McN., van Willigenburg, 2007) For a given number of boxes and rows.

the poset of multiplicity-free ribbons

is always of the form

A411411

and is a convex subposet of the appropriate Schur-positivity poset.

A word or two about the proof

- Proof uses standard Littlewood-Richardson rule to prove lots of equalities.
- Actually know difference along each edge.

Uses necessary conditions to prove incomparabilities.

Why not exactly a product of two chains?

A word or two about the proof

- Proof uses standard Littlewood-Richardson rule to prove lots of equalities.
- Actually know difference along each edge.

Uses necessary conditions to prove incomparabilities.

Why not exactly a product of two chains?

Why a product of two chains?

Fix #boxes=n, #rows=r.

Multiplicity-free ribbons are indexed by rectangles.

Example n = 12, r = 6. The multiplicity-free ribbon [3, 2]:

Define two total orders on the positive integers:

- ▶ Row order: $r 1 <_r 1 <_r r 2 <_r 2 <_r \cdots <_r \lfloor \frac{r}{2} \rfloor$. e.g. $5 <_r 1 <_r 4 <_r 2 <_r 3$.
- ▶ Column order:

$$N-r <_c 1 <_c N-r-1 <_c 2 <_c \cdots <_c \lfloor \frac{N-r+1}{2} \rfloor$$
. e.g. $6 <_c 1 <_c 5 <_c 2 <_c 4 <_c 3$.

Theorem (less roughly stated)

Theorem (McN., van Willigenburg, 2007)

$$[a,b] \leq_s [a',b']$$
 if and only if $a \leq_r a'$ and $b \leq_c b'$.

Example

Row order:

$$5 <_r 1 <_r 4 <_r 2 <_r 3$$
.

Column order:

$$6 <_c 1 <_c 5 <_c 2 <_c 4 <_c 3$$
.

Lattice-theoretic properties

Schur-positivity-poset of multiplicity-free ribbons is a lattice.

Not distributive.

Ungraded analogue of distributivity: trim lattice (Hugh Thomas, 2005). Stronger than extremal lattice (George Markowsky, 1992).

The last word: Even though the full Schur-positivity poset P_n seems unstructured, the subposet of multiplicity-free ribbons is intelligible and