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The setting
Sa: the skew Schur function for the skew shape A
Overarching Question. For skew shapes A and B, when is
SA— SB

Schur-positive?
Want simple conditions in terms of the shapes of A and B.
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The setting
Sa: the skew Schur function for the skew shape A
Overarching Question. For skew shapes A and B, when is
SA— SB

Schur-positive?
Want simple conditions in terms of the shapes of A and B.

Special Case. For partitions «, 3,7y, §, when is

Schur-positive?

[Azenhas, Ballantine, F. Bergeron, Biagioli, Conflitti, Fomin, Fulton,
King, A. N. Kirillov, Lam, Lascoux, Leclerc, C.-K. Li, Mamede, M.,

Okounkov, Orellana, Poon, Postnikov, Pylyavskyy, Rosas, Thibon,

Welsh, van Willigenburg, ...]
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The problems and conjectures

1. Equality of skew Schur functions
Joint with Stephanie van Willigenburg

2. Connected skew Schur functions maximal in Schur-positivity
order
Joint with Pavlo Pylyavskyy and Stephanie van Willigenburg

3. F-support containment and the row-overlap conditions of Reiner,
Shaw and van Willigenburg

4. A Saturation Theorem for skew Schur functions
Joint with Alejandro Morales
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The problems and conjectures

1. Equality of skew Schur functions
Joint with Stephanie van Willigenburg

2. Connected skew Schur functions maximal in Schur-positivity
order
Joint with Pavlo Pylyavskyy and Stephanie van Willigenburg

3. F-support containment and the row-overlap conditions of Reiner,
Shaw and van Willigenburg

4. A Saturation Theorem for skew Schur functions
Joint with Alejandro Morales

R4 S\

Conjectures on differences of skew Schurs Peter McNamara



1. Equality of skew Schur functions
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1. Equality of skew Schur functions

Problem 1. When is s4 = sg? Denoted A ~ B.
Determine necessary and sufficient conditions on shapes of A and B.

~Y
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1. Equality of skew Schur functions

Problem 1. When is s4 = sg? Denoted A ~ B.
Determine necessary and sufficient conditions on shapes of A and B.

~Y [

» Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

complete answer for ribbons
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1. Equality of skew Schur functions

Problem 1. When is s4 = sg? Denoted A ~ B.
Determine necessary and sufficient conditions on shapes of A and B.

~Y [ ~Y

» Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):
complete answer for ribbons
» John Stembridge (2004): skewed staircases
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1. Equality of skew Schur functions

Problem 1. When is s4 = sg? Denoted A ~ B.
Determine necessary and sufficient conditions on shapes of A and B.

~Y [ ~Y

v

Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):
complete answer for ribbons

John Stembridge (2004): skewed staircases

Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):

3 operations for generating skew shapes with equal skew Schur
functions; necessary conditions

M., Steph van Willigenburg (2006): unification, generalization,
conjecture for necessary and sufficient conditions

Christian Gutschwager (2008): multiplicity-free skew shapes

v

v

v

v

Conjectures on differences of skew Schurs Peter McNamara



1. Equality of skew Schur functions

(With apologies)

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of
BTvW (2006)].
Two skew shapes E and E’ satisfy E ~ E’ if and only if, for some r,

E = (( (E1 OW2 E2) OW3 ES) . ) OWr Ef
E = ((-(F oW E}) ow, E,)--)ow, E,, where

o E; = W,;O;W; satisfies four hypotheses for all /,
o E{ and W/ denote either E; and W;, or E; and W'
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1. Equality of skew Schur functions
(With apologies)

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of
BTvW (2006)].
Two skew shapes E and E’ satisfy E ~ E’ if and only if, for some r,

E = (( (E1 OW2 E2) OW3 ES) . ) OWr Ef
E = ((-(F oW E}) ow, E,)--)ow, E,, where

o E; = W,;O;W; satisfies four hypotheses for all /,
o E{ and W/ denote either E; and W;, or E; and W'

Evidence [M., van Willigenburg, (2006)].

» With one more hypothesis, the “if” direction
Proof uses results of Hamel-Goulden and Chen—Yan—Yang.

» n<20
Evidence [Gutschwager, 2006)]. Multiplicity-free skew shapes
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2. Maximal connected skew shapes
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2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

A>sB if sp—sg is Schur-positive.

If B <s Athen |A| = |B|.

Example. Py :
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2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

A>sB if sp—sg is Schur-positive.

If B <s Athen |A| = |B|.

Example. Py :

Problem 2.
What are the maximal elements
of P, among the connected skew

shapes?
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2. Maximal connected skew shapes

Conjecture 2 [M., Pylyavskyy (2007)]. Foreachr =1, ..., n, there is
a unique maximal connected element with r rows, namely the ribbon
marked out by the diagonal of an r-by-(n— r + 1) box.

Examples.

A
-
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2. Maximal connected skew shapes

Conjecture 2 [M., Pylyavskyy (2007)]. Foreachr =1, ..., n, there is
a unique maximal connected element with r rows, namely the ribbon
marked out by the diagonal of an r-by-(n— r + 1) box.

Examples.

A
-

Evidence [M., van Willigenburg (2011)].

» n< 34

» Maximal element must be an equitable ribbon: row (resp.
column) lengths differ by at most 1.

» Suppg(A) == {\F n| s) appears in the Schur expansion of sa},
the Schur-support of A.
eg. Sp=S+ 2851 + S111. Suppg(#) = {3,21, 111},
True in Support Poset: A >g,pp. B if  Suppg(A) 2 Suppg(B).
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3. The row-overlap conditions
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
ii+1,..., i+k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap, (1), overlap,(2),...).

Example.

A=
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
ii+1,..., i+k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap, (1), overlap,(2),...).

Example.

A=

» overlap, (i) = length of the ith row. Thus rows;(A) = 44211.
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
ii+1,..., i+k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap, (1), overlap,(2),...).

Example.

A=

» overlap, (i) = length of the ith row. Thus rows;(A) = 44211.
» overlap,(1) = 2, overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
ii+1,..., i+k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap, (1), overlap,(2),...).

Example.
A=
» overlap, (i) = length of the ith row. Thus rows;(A) = 44211.
» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.
» rowsg(A) = 11
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for s4 = sg.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlap, (/) be the number of columns occupied in common by rows
ii+1,..., i+k—1.

Then rowsy(A) is the weakly decreasing rearrangement of
(overlap, (1), overlap,(2),...).

Example.
A=
» overlap, (i) = length of the ith row. Thus rows;(A) = 44211.
» overlap,(1) = 2 overlap,(2) = 3, overlap,(3) = 1,
overlap,(4) =1, sorows,(A) = 3211.
» rowsg(A) = 11

» rows,(A) = 0 for k > 3.
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3. The row-overlap conditions

Necessary conditons for equality

Theorem [RSVW, (2006)]. Let A and B be skew shapes.
If s4 = sp, then

rows,(A) = rows,(B) for all k.
Question. What are necessary conditions on A and B for s4 — sg to
be Schur-positive?

Theorem [M., (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then

rowsk(A) <gom rowsg(B) forall k.
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3. The row-overlap conditions

Necessary conditons for equality
Theorem [RSVW, (2006)]. Let A and B be skew shapes.
If s4 = sp, then

rows,(A) = rows,(B) for all k.

Question. What are necessary conditions on A and B for s4 — sg to
be Schur-positive?

Theorem [M., (2008)]. Let A and B be skew shapes. If s — sg is
Schur-positive, then

rowsk(A) <gom rowsg(B) forall k.

In fact, it suffices to assume that Supp(A) 2 Suppg(B).
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3. The row-overlap conditions

Theorem [M., (2008)].

’ sa — Sg is Schur-pos. ‘ = ’ Supps(A) 2 Suppg(B) ‘

Conjectures on differences of skew Schurs

Peter McNamara

rows,(A) <dgom rowsg(B) Vk
Equivalent choices:

colsg(A) <gom cols¢(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £
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3. The row-overlap conditions

Theorem [M., (2008)].

’ sa — Sg is Schur-pos. ‘ = ’ Supps(A) 2 Suppg(B) ‘

rows,(A) <dgom rowsg(B) Vk

% . .
Equivalent choices:
colsg(A) <gom cols¢(B) V¢

. rectsy ¢(A) < rectsy ¢(B) Vk, £
Converse is already false at n = 4. ke ke

Problem 3. What weaker algebraic conditions best fill the gap?
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3. The row-overlap conditions and F-support
containment

Theorem [M., (2013)].

’ sa — Sg is Schur-pos. ‘ = ’ Supps(A) 2 Suppg(B) ‘

[} [} rowsk (A) <gom rowsg(B) Vk
Equivalent choices:

colsg(A) <gom cols¢(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

’ Sp—Sgis F—positive‘ = ’ Suppg(A) D Suppg(B) ‘ =

Problem 3. What weaker algebraic conditions best fill the gap?
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3. The row-overlap conditions and F-support
containment

Theorem [M., (2013)].

’ sa — Sg is Schur-pos. ‘ = ’ Supps(A) 2 Suppg(B) ‘

[} U rows(A) <dom rows(B) Vk
Equivalent choices:

colsg(A) <gom cols¢(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

’ Sp—Ssgis F-positive‘ = ’ Suppr(A) D Suppg(B) ‘ <~

Problem 3. What weaker algebraic conditions best fill the gap?

Conjecture 4 [M., (2013)]. The rightmost implication is if and only if.
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3. The row-overlap conditions and F-support
containment

Theorem [M., (2013)].

’ sa — Sg is Schur-pos. ‘ = ’ Supps(A) 2 Suppg(B) ‘

[} U rows(A) <dom rows(B) Vk
Equivalent choices:

colsg(A) <gom cols¢(B) V¢
rectsy ¢(A) < rectsy ¢(B) Vk, £

’ Sp—Ssgis F-positive‘ = ’ Suppr(A) D Suppg(B) ‘ <~

Problem 3. What weaker algebraic conditions best fill the gap?
Conjecture 4 [M., (2013)]. The rightmost implication is if and only if.

Evidence [M., (2013)]. Conjecture is true for:
» n < 13 (compare with failure at n = 4 for other converse implications);

» F-multiplicity-free skew shapes (as classified by Christine
Bessenrodt and Steph van Willigenburg, (2013));

» ribbons whose rows all have length at least 2.
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3. The row-overlap conditions and F-support
containment

Example. n=6

\}t (\

F-support containment ~ Dual of row overlap dominance

Conjectures on differences of skew Schurs Peter McNamara
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3. The row-overlap conditions and F-support
containment

Example. n = 12 case has 12,042 edges.
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4. A Saturation Theorem for skew Schur functions
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4. A Saturation Theorem for skew Schur functions

A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
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4. A Saturation Theorem for skew Schur functions
A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
Equivalently,
Supps(v) € Suppg(A) <= Suppg(nv) C Suppg(nA).
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4. A Saturation Theorem for skew Schur functions
A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
Equivalently,
Supps(v) € Suppg(A) <= Suppg(nv) C Suppg(nA).

Problem 4. [Speyer (2009)]. Can this be generalized by replacing v
by a skew shape?
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4. A Saturation Theorem for skew Schur functions
A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
Equivalently,
Supps(v) € Suppg(A) <= Suppg(nv) C Suppg(nA).

Problem 4. [Speyer (2009)]. Can this be generalized by replacing v

by a skew shape?
Answer. No. False even in the easier direction =-.
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4. A Saturation Theorem for skew Schur functions
A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
Equivalently,
Supps(v) € Suppg(A) <= Suppg(nv) C Suppg(nA).

Problem 4. [Speyer (2009)]. Can this be generalized by replacing v
by a skew shape?

Answer. No. False even in the easier direction =-.

Conjecture 4 [M., Morales (2014)]. A quasisymmetric skew
Saturation Theorem:

Suppg(B) € Suppe(A) <= Suppg(nB) € Suppg(nA).
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4. A Saturation Theorem for skew Schur functions
A= X/u and k is a positive integer, define kA = kA\/ku .
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition v,
v e Suppg(A) <= nv e Suppg(nA).
Equivalently,
Supps(v) € Suppg(A) <= Suppg(nv) C Suppg(nA).

Problem 4. [Speyer (2009)]. Can this be generalized by replacing v
by a skew shape?

Answer. No. False even in the easier direction =-.

Conjecture 4 [M., Morales (2014)]. A quasisymmetric skew
Saturation Theorem:

Suppg(B) € Suppe(A) <= Suppg(nB) € Suppg(nA).

Evidence. Follows from Conjecture 3.
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1. Equality of skew Schur functions
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1. Equality of skew Schur functions

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of
BTvW (2006)].
Two skew shapes E and E’ satisfy E ~ E’ if and only if, for some r,

E = ((-(Eyow, BE2)ow, E3)---)ow, E
E/ — ((.. (E_{ OWZ/ Eé) OWS/ Eé) . ..) oWr E,/_ , Where

o E; = W;O;W; satisfies four hypotheses for all /,
o E! and W! denote either E; and W;, or E and W

Conjectures on differences of skew Schurs Peter McNamara 14



1. Equality of skew Schur functions

Composition of skew shapes

S-S I iy I A
Do E DD N
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1. Equality of skew Schur functions

Composition of skew shapes

boe. OO, O _

L] | B
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1. Equality of skew Schur functions

Composition of skew shapes

oe- LI |
Do E DD
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1. Equality of skew Schur functions

Composition of skew shapes

bep. OO0, | _

L] B
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1. Equality of skew Schur functions

Composition of skew shapes

A | _ |
7ET OO0 ~ R

Theorem [M., van Willigenburg, (2006)]. If D ~ D/, then
DoE ~ DoE ~ DoE*

. | '
OO0 i
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1. Equality of skew Schur functions

Amalgamated compositions: oy

A skew shape W lies in the top of a skew shape E if W appears as a
connected subshape of E that includes the northeasternmost cell of
E.

W|wW
W{W|W

Conjectures on differences of skew Schurs Peter McNamara



1. Equality of skew Schur functions

Amalgamated compositions: oy

A skew shape W lies in the top of a skew shape E if W appears as a
connected subshape of E that includes the northeasternmost cell of
E.

W|w
W{W|W

wlw
(wiw|w

Similarly, W lies in the bottom of E.

Our interest. W lies in both the top and bottom of E. We write
E = Wow.
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1. Equality of skew Schur functions

Amalgamated compositions: oy

A skew shape W lies in the top of a skew shape E if W appears as a
connected subshape of E that includes the northeasternmost cell of
E.

W|wW
W{W|W

A
wlw|>,
(wiwlw| [

Similarly, W lies in the bottom of E.

Our interest. W lies in both the top and bottom of E. We write
E = Wow.

Hypotheses [inspired by hypotheses of RSvW].

1. Whe and W, are separated by at least one diagonal.

2. E\ Wpe and E \ W, are both connected skew shapes.

3. W is maximal given its set of diagonals.
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1. Equality of skew Schur functions

Example.

Doy E= LI °q lil =
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1. Equality of skew Schur functions

Example.

Doy E= LI °q lil =
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1. Equality of skew Schur functions

Example.

DOWE: _I I OE ﬂ = F
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1. Equality of skew Schur functions

Example.

Doy E= LI OEEF =
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1. Equality of skew Schur functions

Example.

DOWE: _I I OE ﬂ = #
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1. Equality of skew Schur functions

Construction of W and O:

w
w

2=

2=
gz

2=
2=
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1. Equality of skew Schur functions

Construction of W and O:

VVIVVVY

VVTVVTVY
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1. Equality of skew Schur functions

Construction of W and O:

VVIVVTVY

VVTVVTVY

|

WIW| 1
[ 1

IRAARAARAS

Hypothesis 4. W is never adjacent to O.
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1. Equality of skew Schur functions

Construction of W and O:

VVTVVTVY

|

WIW| 1
[ 1

IRAARAARAS

Hypothesis 4. W is never adjacent to O.

Conjecture 1.
Two skew shapes E and E’ satisfy E ~ E’ if and only if, for some r,

E = ((-+-(Etomw E2)ow, E3) -+ ) ow, E;
E/ — ((.. (E_{ OWZ/ Eé) OWS/ Eé) . ..) oWr E,/_ , Where

o E; = W,;O;W; satisfies Hypotheses 1—4 for all /,
o E{ and W/ denote either E; and W;, or E; and W
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1. Equality of skew Schur functions

Construction of W and O:

VVTVVTVY

|

WIW| 1
[ 1

IRAARAARAS

Hypothesis 4. W is never adjacent to O.

Conjecture 1.
Two skew shapes E and E’ satisfy E ~ E’ if and only if, for some r,

E = ((-(Eyow, E2)ow, E3)---)ow, E
E/ — ((.. (E_{ OWZ/ Eé) OWS/ Eé) . ..) oWr E,/_ , Where

o E; = W,;O;W; satisfies Hypotheses 1—4 for all /,
o E{ and W/ denote either E; and W;, or E; and W
Thanks!

Conjectures on differences of skew Schurs Peter McNamara 18



