Conjectures concerning the difference of two skew Schur functions

Peter McNamara

Bucknell University

Positivity in Algebraic Combinatorics
Banff International Research Station

15 August 2015

Slides and papers available from www.facstaff.bucknell.edu/pm040/
s_{A} : the skew Schur function for the skew shape A
Overarching Question. For skew shapes A and B, when is

$$
s_{A}-s_{B}
$$

Schur-positive?
Want simple conditions in terms of the shapes of A and B.

The setting

s_{A} : the skew Schur function for the skew shape A
Overarching Question. For skew shapes A and B, when is

$$
s_{A}-s_{B}
$$

Schur-positive?
Want simple conditions in terms of the shapes of A and B.
Special Case. For partitions $\alpha, \beta, \gamma, \delta$, when is

$$
s_{\alpha} s_{\beta}-s_{\gamma} s_{\delta}
$$

Schur-positive?

[Azenhas, Ballantine, F. Bergeron, Biagioli, Conflitti, Fomin, Fulton, King, A. N. Kirillov, Lam, Lascoux, Leclerc, C.-K. Li, Mamede, M., Okounkov, Orellana, Poon, Postnikov, Pylyavskyy, Rosas, Thibon, Welsh, van Willigenburg, ...]

The problems and conjectures

1. Equality of skew Schur functions

Joint with Stephanie van Willigenburg
2. Connected skew Schur functions maximal in Schur-positivity order
Joint with Pavlo Pylyavskyy and Stephanie van Willigenburg
3. F-support containment and the row-overlap conditions of Reiner, Shaw and van Willigenburg
4. A Saturation Theorem for skew Schur functions Joint with Alejandro Morales

The problems and conjectures

1. Equality of skew Schur functions Joint with Stephanie van Willigenburg
2. Connected skew Schur functions maximal in Schur-positivity order
Joint with Pavlo Pylyavskyy and Stephanie van Willigenburg
3. F-support containment and the row-overlap conditions of Reiner, Shaw and van Willigenburg
4. A Saturation Theorem for skew Schur functions Joint with Alejandro Morales

Problem 1. When is $s_{A}=s_{B}$? Denoted $A \sim B$.
Determine necessary and sufficient conditions on shapes of A and B.

Problem 1. When is $s_{A}=s_{B}$? Denoted $A \sim B$.
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004): complete answer for ribbons

1. Equality of skew Schur functions

Problem 1. When is $s_{A}=s_{B}$? Denoted $A \sim B$.
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004): complete answer for ribbons
- John Stembridge (2004): skewed staircases

1. Equality of skew Schur functions

Problem 1. When is $s_{A}=s_{B}$? Denoted $A \sim B$.
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004): complete answer for ribbons
- John Stembridge (2004): skewed staircases
- Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006): 3 operations for generating skew shapes with equal skew Schur functions; necessary conditions
- M., Steph van Willigenburg (2006): unification, generalization, conjecture for necessary and sufficient conditions
- Christian Gutschwager (2008): multiplicity-free skew shapes

1. Equality of skew Schur functions

(With apologies)
Conjecture 1 [M., van Willigenburg (2006); inspired by main result of BTvW (2006)].
Two skew shapes E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ W_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies four hypotheses for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

1. Equality of skew Schur functions

(With apologies)
Conjecture 1 [M., van Willigenburg (2006); inspired by main result of BTvW (2006)].
Two skew shapes E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies four hypotheses for all i,
- E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

Evidence [M., van Willigenburg, (2006)].

- With one more hypothesis, the "if" direction

Proof uses results of Hamel-Goulden and Chen-Yan-Yang.

- $n \leq 20$

Evidence [Gutschwager, 2006)]. Multiplicity-free skew shapes

2. Maximal connected skew shapes

2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

$$
A \geq_{s} B \quad \text { if } \quad s_{A}-s_{B} \quad \text { is Schur-positive. }
$$

If $B \leq_{s} A$ then $|A|=|B|$.
Example. P_{4} :

2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

$$
A \geq_{s} B \quad \text { if } \quad s_{A}-s_{B} \quad \text { is Schur-positive. }
$$

If $B \leq_{s} A$ then $|A|=|B|$.
Example. P_{4} :

2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

$$
A \geq_{s} B \quad \text { if } \quad s_{A}-s_{B} \quad \text { is Schur-positive. }
$$

If $B \leq_{s} A$ then $|A|=|B|$.
Example. P_{4} :

Problem 2.
What are the maximal elements of P_{n} among the connected skew shapes?

2. Maximal connected skew shapes

Conjecture 2 [M., Pylyavskyy (2007)]. For each $r=1, \ldots, n$, there is a unique maximal connected element with r rows, namely the ribbon marked out by the diagonal of an r-by- $(n-r+1)$ box.
Examples.

2. Maximal connected skew shapes

Conjecture 2 [M., Pylyavskyy (2007)]. For each $r=1, \ldots, n$, there is a unique maximal connected element with r rows, namely the ribbon marked out by the diagonal of an r-by- $(n-r+1)$ box.
Examples.

Evidence [M., van Willigenburg (2011)].

- $n \leq 34$
- Maximal element must be an equitable ribbon: row (resp. column) lengths differ by at most 1.
- $\operatorname{Supp}_{s}(A):=\left\{\lambda \vdash n \mid s_{\lambda}\right.$ appears in the Schur expansion of $\left.s_{A}\right\}$, the Schur-support of A.
e.g. $s_{\text {ғ }}=s_{3}+2 s_{21}+s_{111} . \operatorname{Supp}_{s}($ ғ $)=\{3,21,111\}$.

True in Support Poset: $A \geq_{\text {Supp }_{s}} B$ if $\operatorname{Supp}_{s}(A) \supseteq \operatorname{Supp}_{s}(B)$.
3. The row-overlap conditions

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1), \operatorname{overlap}_{k}(2), \ldots$).
Example.

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).
Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus rows $_{1}(A)=44211$.

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).
Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus rows $_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1, \quad \operatorname{sor}^{2} \operatorname{rows}_{2}(A)=3211$.

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus rows ${ }_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad \operatorname{sor}^{\operatorname{rows}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.

3. The row-overlap conditions

General idea: the overlaps among rows must match up for $s_{A}=s_{B}$.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus rows ${ }_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3$, $\operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad \operatorname{sor}_{\operatorname{rows}_{2}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.
- $\operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.

3. The row-overlap conditions

Necessary conditons for equality
Theorem [RSvW, (2006)]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then
$\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k.

Question. What are necessary conditions on A and B for $s_{A}-s_{B}$ to be Schur-positive?

Theorem [M., (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \leq_{\text {dom }} \operatorname{rows}_{k}(B) \quad \text { for all } k .
$$

3. The row-overlap conditions

Necessary conditons for equality
Theorem [RSvW, (2006)]. Let A and B be skew shapes.
If $s_{A}=s_{B}$, then
$\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k.

Question. What are necessary conditions on A and B for $s_{A}-s_{B}$ to be Schur-positive?

Theorem [M., (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \leq_{\text {dom }} \operatorname{rows}_{k}(B) \quad \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{Supp}_{s}(A) \supseteq \operatorname{Supp}_{s}(B)$.

Theorem [M., (2008)].

$$
s_{A}-s_{B} \text { is Schur-pos. } \Rightarrow \operatorname{Supp}_{s}(A) \supseteq \operatorname{Supp}_{s}(B)
$$

$\operatorname{rows}_{k}(A) \leq$ dom rows $_{k}(B) \forall k$
Equivalent choices:
$\operatorname{cols}_{\ell}(A) \leq$ dom $^{\operatorname{cols}}(B) \forall \ell$
$\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$

3. The row-overlap conditions

Theorem [M., (2008)].
$s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{Supp}_{s}(A) \supseteq \operatorname{Supp}_{s}(B)$

Converse is already false at $n=4$.
Problem 3. What weaker algebraic conditions best fill the gap?

3. The row-overlap conditions and F-support containment

Theorem [M., (2013)].

Problem 3. What weaker algebraic conditions best fill the gap?

3. The row-overlap conditions and F-support containment

Theorem [M., (2013)].

Problem 3. What weaker algebraic conditions best fill the gap?
Conjecture 4 [M., (2013)]. The rightmost implication is if and only if.

3. The row-overlap conditions and F-support containment

Theorem [M., (2013)].

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{Supp}_{s}(A) \supseteq \operatorname{Supp}_{s}(B)$		
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \leq_{\text {dom }} \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{Supp}_{F}(A) \supseteq \operatorname{Supp}_{F}(B)$	\Leftrightarrow	$\begin{aligned} & \text { Equivalent choices: } \\ & \operatorname{cols}_{\ell}(A) \leq \leq_{\operatorname{dom}} \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

Problem 3. What weaker algebraic conditions best fill the gap?
Conjecture 4 [M., (2013)]. The rightmost implication is if and only if.
Evidence [M., (2013)]. Conjecture is true for:

- $n \leq 13$ (compare with failure at $n=4$ for other converse implications);
- F-multiplicity-free skew shapes (as classified by Christine Bessenrodt and Steph van Willigenburg, (2013));
- ribbons whose rows all have length at least 2.

3. The row-overlap conditions and F-support containment

Example. $n=6$

F-support containment

Dual of row overlap dominance

3. The row-overlap conditions and F-support containment

Example. $n=12$ case has 12,042 edges.

4. A Saturation Theorem for skew Schur functions

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

Equivalently,

$$
\operatorname{Supp}_{s}(\nu) \subseteq \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \operatorname{Supp}_{s}(n \nu) \subseteq \operatorname{Supp}_{s}(n A)
$$

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

Equivalently,

$$
\operatorname{Supp}_{s}(\nu) \subseteq \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \operatorname{Supp}_{s}(n \nu) \subseteq \operatorname{Supp}_{s}(n A)
$$

Problem 4. [Speyer (2009)]. Can this be generalized by replacing ν by a skew shape?

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

Equivalently,

$$
\operatorname{Supp}_{s}(\nu) \subseteq \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \operatorname{Supp}_{s}(n \nu) \subseteq \operatorname{Supp}_{s}(n A)
$$

Problem 4. [Speyer (2009)]. Can this be generalized by replacing ν by a skew shape?
Answer. No. False even in the easier direction \Rightarrow.

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

Equivalently,

$$
\operatorname{Supp}_{s}(\nu) \subseteq \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \operatorname{Supp}_{s}(n \nu) \subseteq \operatorname{Supp}_{s}(n A)
$$

Problem 4. [Speyer (2009)]. Can this be generalized by replacing ν by a skew shape?
Answer. No. False even in the easier direction \Rightarrow.
Conjecture 4 [M., Morales (2014)]. A quasisymmetric skew Saturation Theorem:

$$
\operatorname{Supp}_{F}(B) \subseteq \operatorname{Supp}_{F}(A) \Longleftrightarrow \operatorname{Supp}_{F}(n B) \subseteq \operatorname{Supp}_{F}(n A)
$$

4. A Saturation Theorem for skew Schur functions

$A=\lambda / \mu$ and k is a positive integer, define $k A=k \lambda / k \mu$.
Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

$$
\nu \in \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \quad n \nu \in \operatorname{Supp}_{s}(n A)
$$

Equivalently,

$$
\operatorname{Supp}_{s}(\nu) \subseteq \operatorname{Supp}_{s}(A) \quad \Longleftrightarrow \operatorname{Supp}_{s}(n \nu) \subseteq \operatorname{Supp}_{s}(n A)
$$

Problem 4. [Speyer (2009)]. Can this be generalized by replacing ν by a skew shape?
Answer. No. False even in the easier direction \Rightarrow.
Conjecture 4 [M., Morales (2014)]. A quasisymmetric skew Saturation Theorem:

$$
\operatorname{Supp}_{F}(B) \subseteq \operatorname{Supp}_{F}(A) \Longleftrightarrow \operatorname{Supp}_{F}(n B) \subseteq \operatorname{Supp}_{F}(n A)
$$

Evidence. Follows from Conjecture 3.

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of BTvW (2006)].
Two skew shapes E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies four hypotheses for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

1. Equality of skew Schur functions

Composition of skew shapes
$D \circ E=$

1. Equality of skew Schur functions

Composition of skew shapes
$D \circ E=$

1. Equality of skew Schur functions

Composition of skew shapes
$D \circ E=$

1. Equality of skew Schur functions

Composition of skew shapes
$D \circ E=$

1. Equality of skew Schur functions

Composition of skew shapes
$D \circ E=$

○

Theorem [M., van Willigenburg, (2006)]. If $D \sim D^{\prime}$, then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*}
$$

Amalgamated compositions: ${ }^{\mathrm{W}} \mathrm{W}$
A skew shape W lies in the top of a skew shape E if W appears as a connected subshape of E that includes the northeasternmost cell of E.

1. Equality of skew Schur functions

Amalgamated compositions: ${ }^{\mathrm{W}} \mathrm{w}$
A skew shape W lies in the top of a skew shape E if W appears as a connected subshape of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.
Our interest. W lies in both the top and bottom of E. We write $E=W O W$.

1. Equality of skew Schur functions

Amalgamated compositions: ${ }^{\mathrm{W}} \mathrm{w}$
A skew shape W lies in the top of a skew shape E if W appears as a connected subshape of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.
Our interest. W lies in both the top and bottom of E. We write $E=W O W$.
Hypotheses [inspired by hypotheses of RSvW].

1. $W_{n e}$ and $W_{s w}$ are separated by at least one diagonal.
2. $E \backslash W_{n e}$ and $E \backslash W_{s w}$ are both connected skew shapes.
3. W is maximal given its set of diagonals.

Example.

Example.

$$
D \circ_{w} E=\frac{\square \square}{\square}
$$

$=$

1. Equality of skew Schur functions

Example.

$$
D \circ{ }_{w} E=\quad \square \square
$$

1. Equality of skew Schur functions

Example.

$=$

1. Equality of skew Schur functions

Example.
$D{ }_{W} E=$

1. Equality of skew Schur functions

Construction of \bar{W} and \bar{O} :

1. Equality of skew Schur functions

Construction of \bar{W} and \bar{O} :

1. Equality of skew Schur functions

Construction of \bar{W} and \bar{O} :

Hypothesis 4. \bar{W} is never adjacent to \bar{O}.

1. Equality of skew Schur functions

Construction of \bar{W} and \bar{O} :

Hypothesis $4 . \bar{W}$ is never adjacent to \bar{O}.
Conjecture 1.
Two skew shapes E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-4 for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

1. Equality of skew Schur functions

Construction of \bar{W} and \bar{O} :

Hypothesis $4 . \bar{W}$ is never adjacent to \bar{O}.
Conjecture 1.
Two skew shapes E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies Hypotheses 1-4 for all i,
$\circ E_{i}^{\prime}$ and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Thanks!

