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The setting

sA: the skew Schur function for the skew shape A

Overarching Question. For skew shapes A and B, when is

sA − sB

Schur-positive?
Want simple conditions in terms of the shapes of A and B.

Special Case. For partitions α, β, γ, δ, when is

sαsβ − sγsδ

Schur-positive?
· =

[Azenhas, Ballantine, F. Bergeron, Biagioli, Conflitti, Fomin, Fulton,
King, A. N. Kirillov, Lam, Lascoux, Leclerc, C.-K. Li, Mamede, M.,
Okounkov, Orellana, Poon, Postnikov, Pylyavskyy, Rosas, Thibon,
Welsh, van Willigenburg, ...]
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The problems and conjectures

1. Equality of skew Schur functions
Joint with Stephanie van Willigenburg

2. Connected skew Schur functions maximal in Schur-positivity
order
Joint with Pavlo Pylyavskyy and Stephanie van Willigenburg

3. F -support containment and the row-overlap conditions of Reiner,
Shaw and van Willigenburg

4. A Saturation Theorem for skew Schur functions
Joint with Alejandro Morales
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1. Equality of skew Schur functions

Problem 1. When is sA = sB? Denoted A ∼ B.
Determine necessary and sufficient conditions on shapes of A and B.

∼

∼ ∼

I Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):
complete answer for ribbons

I John Stembridge (2004): skewed staircases
I Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):

3 operations for generating skew shapes with equal skew Schur
functions; necessary conditions

I M., Steph van Willigenburg (2006): unification, generalization,
conjecture for necessary and sufficient conditions

I Christian Gutschwager (2008): multiplicity-free skew shapes
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1. Equality of skew Schur functions

(With apologies)

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of
BTvW (2006)].
Two skew shapes E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′
2

E ′2) ◦W ′
3

E ′3) · · · ) ◦Wr E ′r , where

◦ Ei = WiOiWi satisfies four hypotheses for all i ,
◦ E ′i and W ′

i denote either Ei and Wi , or E∗i and W ∗
i .

Evidence [M., van Willigenburg, (2006)].
I With one more hypothesis, the “if” direction

Proof uses results of Hamel–Goulden and Chen–Yan–Yang.
I n ≤ 20

Evidence [Gutschwager, 2006)]. Multiplicity-free skew shapes
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2. Maximal connected skew shapes

Definition. Let A, B be skew shapes. We say that

A ≥s B if sA − sB is Schur-positive.

If B ≤s A then |A| = |B|.

Example. P4 :

Problem 2.
What are the maximal elements
of Pn among the connected skew
shapes?
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2. Maximal connected skew shapes

Conjecture 2 [M., Pylyavskyy (2007)]. For each r = 1, . . . ,n, there is
a unique maximal connected element with r rows, namely the ribbon
marked out by the diagonal of an r -by-(n − r + 1) box.

Examples.

Evidence [M., van Willigenburg (2011)].
I n ≤ 34
I Maximal element must be an equitable ribbon: row (resp.

column) lengths differ by at most 1.
I Supps(A) B {λ ` n | sλ appears in the Schur expansion of sA},

the Schur-support of A.
e.g. s = s3 + 2s21 + s111. Supps( ) = {3,21,111}.
True in Support Poset: A ≥Supps

B if Supps(A) ⊇ Supps(B).
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3. The row-overlap conditions

General idea: the overlaps among rows must match up for sA = sB.

Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let
overlapk (i) be the number of columns occupied in common by rows
i, i + 1, . . . , i + k − 1.
Then rowsk (A) is the weakly decreasing rearrangement of
(overlapk (1),overlapk (2), . . .).

Example.

A =

I overlap1(i) = length of the i th row. Thus rows1(A) = 44211.
I overlap2(1) = 2, overlap2(2) = 3, overlap2(3) = 1,

overlap2(4) = 1, so rows2(A) = 3211.
I rows3(A) = 11.
I rowsk (A) = ∅ for k > 3.
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3. The row-overlap conditions

Necessary conditons for equality

Theorem [RSvW, (2006)]. Let A and B be skew shapes.
If sA = sB, then

rowsk (A) = rowsk (B) for all k .

Question. What are necessary conditions on A and B for sA − sB to
be Schur-positive?

Theorem [M., (2008)]. Let A and B be skew shapes. If sA − sB is
Schur-positive, then

rowsk (A) ≤dom rowsk (B) for all k .

In fact, it suffices to assume that Supps(A) ⊇ Supps(B).
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3. The row-overlap conditions

and F -support
containment

Theorem [M., (2008)].

sA − sB is Schur-pos.

sA − sB is F -positive

Supps(A) ⊇ Supps(B)

SuppF (A) ⊇ SuppF (B)

rowsk (A) ≤dom rowsk (B) ∀k
Equivalent choices:
cols`(A) ≤dom cols`(B) ∀`
rectsk ,`(A) ≤ rectsk ,`(B) ∀k , `

⇒
u

⇒ ⇒

⇐

⇓ ⇓

Converse is already false at n = 4.

Problem 3. What weaker algebraic conditions best fill the gap?

Conjecture 4 [M., (2013)]. The rightmost implication is if and only if.

Evidence [M., (2013)]. Conjecture is true for:
I n ≤ 13 (compare with failure at n = 4 for other converse implications);
I F -multiplicity-free skew shapes (as classified by Christine

Bessenrodt and Steph van Willigenburg, (2013));
I ribbons whose rows all have length at least 2.
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3. The row-overlap conditions and F -support
containment

Example. n = 6

F -support containment Dual of row overlap dominance
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3. The row-overlap conditions and F -support
containment

Example. n = 12 case has 12,042 edges.
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4. A Saturation Theorem for skew Schur functions

A = λ/µ and k is a positive integer, define kA = kλ/kµ .

Theorem [Knutson, Tao, (1999)]. For a skew shape A and partition ν,

ν ∈ Supps(A) ⇐⇒ nν ∈ Supps(nA) .

Equivalently,

Supps(ν) ⊆ Supps(A) ⇐⇒ Supps(nν) ⊆ Supps(nA) .

Problem 4. [Speyer (2009)]. Can this be generalized by replacing ν
by a skew shape?

Answer. No. False even in the easier direction⇒.

Conjecture 4 [M., Morales (2014)]. A quasisymmetric skew
Saturation Theorem:

SuppF (B) ⊆ SuppF (A) ⇐⇒ SuppF (nB) ⊆ SuppF (nA).

Evidence. Follows from Conjecture 3.
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1. Equality of skew Schur functions

Conjecture 1 [M., van Willigenburg (2006); inspired by main result of
BTvW (2006)].
Two skew shapes E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′
2

E ′2) ◦W ′
3

E ′3) · · · ) ◦Wr E ′r , where

◦ Ei = WiOiWi satisfies four hypotheses for all i ,
◦ E ′i and W ′

i denote either Ei and Wi , or E∗i and W ∗
i .
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1. Equality of skew Schur functions

Composition of skew shapes

D ◦ E =

Theorem [M., van Willigenburg, (2006)]. If D ∼ D′, then

D′ ◦ E ∼ D ◦ E ∼ D ◦ E∗.
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1. Equality of skew Schur functions

Amalgamated compositions: ◦W
A skew shape W lies in the top of a skew shape E if W appears as a
connected subshape of E that includes the northeasternmost cell of
E .

W

W W

W W

Similarly, W lies in the bottom of E .

Our interest. W lies in both the top and bottom of E . We write
E = WOW .
Hypotheses [inspired by hypotheses of RSvW].
1. Wne and Wsw are separated by at least one diagonal.
2. E \Wne and E \Wsw are both connected skew shapes.
3. W is maximal given its set of diagonals.
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1. Equality of skew Schur functions

Example.

D ◦W E =

∼
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1. Equality of skew Schur functions

Construction of W and O:

W
W
W W

W

W
W W W

W

W
W W

W
W

Hypothesis 4. W is never adjacent to O.

Conjecture 1.
Two skew shapes E and E ′ satisfy E ∼ E ′ if and only if, for some r ,

E = ((· · · (E1 ◦W2 E2) ◦W3 E3) · · · ) ◦Wr Er

E ′ = ((· · · (E ′1 ◦W ′
2

E ′2) ◦W ′
3

E ′3) · · · ) ◦Wr E ′r , where

◦ Ei = WiOiWi satisfies Hypotheses 1–4 for all i ,
◦ E ′i and W ′

i denote either Ei and Wi , or E∗i and W ∗
i .

Thanks!
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