Inequalities among symmetric polynomials

Peter McNamara

Bucknell University

Penn State Altoona
23 October 2014

Slides and paper available from www.facstaff.bucknell.edu/pm040/

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:
Define combinatorics

What is algebraic combinatorics anyhow?

The biggest open problem in combinatorics:
Define combinatorics

Algebraic combinatorics:
The use of techniques from algebra, topology, and geometry in the solution of combinatorial problems, or the use of combinatorial methods to attack problems in these areas [Billera, Björner, Greene, Simion, Stanley, 1999].

Outline

- Symmetric polynomials/functions
- Skew Schur functions
- Relationships among skew Schur functions
- The quasisymmetric insight

What are symmetric functions?

Definition.

A symmetric polynomial is a polynomial that is invariant under any permutation of its variables $x_{1}, x_{2}, \ldots x_{n}$.

Example.

- $x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2}$ is a symmetric polynomial in x_{1}, x_{2}, x_{3}.

Definition.
A symmetric function is a formal power series that is invariant under any permutation of its (infinite set of) variables $x=\left(x_{1}, x_{2}, \ldots\right)$.

Examples.

- $\sum_{i \neq j} x_{i}^{2} x_{j}$ is a symmetric function.
- $\sum_{i<j} x_{i}^{2} x_{j}$ is not symmetric.

Bases for the symmetric functions

Fact: The symmetric functions form a vector space. What is a possible basis?

- Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4} x_{3}^{4}
$$

Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

- Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4} x_{3}^{4}+x_{1}^{4} x_{2}^{7} x_{3}^{4}+x_{1}^{4} x_{2}^{4} x_{3}^{7}+x_{1}^{7} x_{3}^{4} x_{4}^{4}+\cdots
$$

Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

- Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4} x_{3}^{4}+x_{1}^{4} x_{2}^{7} x_{3}^{4}+x_{1}^{4} x_{2}^{4} x_{3}^{7}+x_{1}^{7} x_{3}^{4} x_{4}^{4}+\cdots
$$

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, e.g. $\lambda=(7,4,4)$,

$$
m_{\lambda}=\sum_{\substack{i_{1}, \ldots, i_{\ell} \\ \text { distinct }}} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{\ell}}^{\lambda_{\ell}} .
$$

Bases for the symmetric functions

Fact: The symmetric functions form a vector space.
What is a possible basis?

- Monomial symmetric functions: Start with a monomial:

$$
x_{1}^{7} x_{2}^{4} x_{3}^{4}+x_{1}^{4} x_{2}^{7} x_{3}^{4}+x_{1}^{4} x_{2}^{4} x_{3}^{7}+x_{1}^{7} x_{3}^{4} x_{4}^{4}+\cdots .
$$

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$, e.g. $\lambda=(7,4,4)$,

$$
m_{\lambda}=\sum_{\substack{i_{1}, \ldots, i_{\ell} \\ \text { distinct }}} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{\ell}}^{\lambda_{\ell}} .
$$

- Elementary symmetric functions, e_{λ}.
- Complete homogeneous symmetric functions, h_{λ}.
- Power sum symmetric functions, p_{λ}.

Combinatorial interest: for degree n, dimension = \#partitions of n.
Typical questions: Prove they are bases, convert between bases, ...

Schur functions

Cauchy, 1815.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram.

Example: $\lambda=(4,4,3,2)$.

Schur functions

Cauchy, 1815.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram. Example: $\lambda=(4,4,3,2)$.
- Semistandard Young tableau (SSYT)

Schur functions

Cauchy, 1815.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram. Example: $\lambda=(4,4,3,2)$.
- Semistandard Young tableau (SSYT)

The Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 ' s} \text { in } T x_{2}^{\# 2 ' s} \text { in } T \ldots
$$

Example.
$s_{4432}=x_{1}^{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}^{2}+\cdots$.

Schur functions

Example.

Hence

$$
\begin{aligned}
s_{21}\left(x_{1}, x_{2}, x_{3}\right)= & x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& +2 x_{1} x_{2} x_{3} \\
= & m_{21}\left(x_{1}, x_{2}, x_{3}\right)+2 m_{111}\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Facts:

- Schur functions are symmetric functions.
- They form an orthonormal basis: $\left\langle\boldsymbol{s}_{\lambda}, \boldsymbol{s}_{\mu}\right\rangle=\delta_{\lambda \mu}$.

Question. Why do we really care about Schur functions?
But first...

Schur functions

Cauchy, 1815

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- Young diagram. Example: $\lambda=(4,4,3,2)$
- Semistandard Young tableau (SSYT).

The \quad Schur function s_{λ} in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example.
$s_{4432}=x_{1} x_{3}^{2} x_{4}^{4} x_{5} x_{6}^{2} x_{7} x_{9}^{2}+\cdots$.
H. Nägelsbach (1871); Craig Aitken (1929)

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
- μ fits inside λ.
- Young diagram.

Example: $\lambda / \mu=(4,4,3,2) /(3,1)$

- Semistandard Young tableau (SSYT).

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example.
$s_{4432 / 31}=\quad x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}^{2}+\cdots$.

- Skew Schur functions are symmetric functions.

- Conjecture [Stanley, 1972]. Any other shapes give non-symmetric functions.
- There are too many skew Schur functions to form a basis.
- Our interest: What are the relationships among them?

$$
\boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

$c_{\mu \nu}^{\lambda}$: Littlewood-Richardson coefficients

- Skew Schur functions are symmetric functions.

- Conjecture [Stanley, 1972]. Any other shapes give non-symmetric functions.
- There are too many skew Schur functions to form a basis.
- Our interest: What are the relationships among them?

$$
\boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

$c_{\mu \nu}^{\lambda}$: Littlewood-Richardson coefficients

s_{λ} and $c_{\mu \nu}^{\lambda}$ are superstars!

1. Representation Theory of S_{n} :

$$
\left(S^{\mu} \otimes S^{\nu}\right) \uparrow^{\mathcal{S}_{n}}=\bigoplus_{\lambda} c_{\mu \nu}^{\lambda} S^{\lambda}, \text { so } \chi^{\mu} \cdot \chi^{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} \chi^{\lambda} \text {. }
$$

We also have that $s_{\lambda}=$ the Frobenius characteristic of χ^{λ}.
2. Representations of $\mathrm{GL}(n, \mathbb{C})$:
$s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=$ the character of the irreducible rep. V^{λ}.

$$
V^{\mu} \otimes V^{\nu}=\bigoplus c_{\mu \nu}^{\lambda} V^{\lambda} .
$$

3. Algebraic Geometry: Schubert classes σ_{λ} form a linear basis for $H^{*}\left(\operatorname{Gr}_{k n}\right)$. We have

$$
\sigma_{\mu} \sigma_{\nu}=\sum_{\lambda \subseteq k \times(n-k)} c_{\mu \nu}^{\lambda} \sigma_{\lambda} .
$$

Thus $c_{\mu \nu}^{\lambda}=$ number of points of $\operatorname{Gr}_{k n}$ in $\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda V}$.
4. Linear Algebra: When do there exist Hermitian matrices A, B and $C=A+B$ with eigenvalue sets μ, ν and λ, respectively?
4. Linear Algebra: When do there exist Hermitian matrices A, B and $C=A+B$ with eigenvalue sets μ, ν and λ, respectively? When $c_{\mu \nu}^{\lambda}>0$. (Heckman, Klyachko, Knutson, Tao.)
4. Linear Algebra: When do there exist Hermitian matrices A, B and $C=A+B$ with eigenvalue sets μ, ν and λ, respectively?
When $c_{\mu \nu}^{\lambda}>0$.
(Heckman, Klyachko, Knutson, Tao.)

By 1, 2 or 3 we get:

$$
c_{\mu \nu}^{\lambda} \geq 0
$$

Consequence:
We say that $s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}$ is a Schur-positive function.
Want a combinatorial proof that $c_{\mu \nu}^{\lambda} \geq 0$: "They must count something!" [Littlewood-Richardson rule]

- Symmetric functions: invariant until any permutation of their variables x_{1}, x_{2}, \ldots.
- Schur functions: (most?) important basis for the symmetric functions.
- Skew Schur functions are Schur-positive.
- (Skew) Schur functions have a beautiful combinatorial definition in terms of tableaux.
- Symmetric functions: invariant until any permutation of their variables x_{1}, x_{2}, \ldots.
- Schur functions: (most?) important basis for the symmetric functions.
- Skew Schur functions are Schur-positive.
- (Skew) Schur functions have a beautiful combinatorial definition in terms of tableaux.

Our focus: What are the relationships among skew Schur functions?

The equality question
s_{A} : the skew Schur function for the skew shape A.

Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

The equality question

s_{A} : the skew Schur function for the skew shape A.

Wide Open Question. When is $s_{A}=s_{B}$?
Determine necessary and sufficient conditions on shapes of A and B.

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004)
- John Stembridge (2004)
- Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006)
- McN., Steph van Willigenburg (2006)
- Christian Gutschwager (2008)

Necessary conditions for equality

Necessary conditions for equality
General idea: the overlaps among rows must match up.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=44211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus $\operatorname{rows}_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2$, overlap $_{2}(2)=3$, overlap $2(3)=1$, $\operatorname{overlap}_{2}(4)=1, \quad \operatorname{sorows}_{2}(A)=3211$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then $\operatorname{rows}_{k}(A)$ is the weakly decreasing rearrangement of $\left(\operatorname{overlap}_{k}(1), \operatorname{overlap}_{k}(2), \ldots\right)$.

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the i th row. Thus rows $_{1}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, $\operatorname{overlap}_{2}(4)=1, \quad \operatorname{sor}_{\operatorname{rows}_{2}}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.

Necessary conditions for equality

General idea: the overlaps among rows must match up.
Definition [Reiner, Shaw, van Willigenburg]. For a skew shape A, let overlap $_{k}(i)$ be the number of columns occupied in common by rows $i, i+1, \ldots, i+k-1$.
Then rows $_{k}(A)$ is the weakly decreasing rearrangement of (overlap ${ }_{k}(1)$, overlap $_{k}(2), \ldots$).

Example.

- $\operatorname{overlap}_{1}(i)=$ length of the ith row. $\operatorname{Thus~}_{\operatorname{rows}_{1}}(A)=44211$.
- $\operatorname{overlap}_{2}(1)=2, \operatorname{overlap}_{2}(2)=3, \operatorname{overlap}_{2}(3)=1$, overlap $_{2}(4)=1, \quad$ so $\operatorname{rows}_{2}(A)=3211$.
- $\operatorname{rows}_{3}(A)=11$.
- $\operatorname{rows}_{k}(A)=\emptyset$ for $k>3$.

Necessary conditions for equality

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k.

Example.

Necessary conditions for equality

Theorem [RSvW]. Let A and B be skew shapes. If $s_{A}=s_{B}$, then $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k.

Example.

Converse is not true:

Our main interest: inequalities.

$$
s_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} s_{\nu}
$$

When is $\quad s_{\lambda / \mu}-s_{\sigma / \tau} \quad$ Schur-positive?

Our main interest: inequalities.

$$
\boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu}
$$

When is $\quad s_{\lambda / \mu}-s_{\sigma / \tau} \quad$ Schur-positive?
Definition. Let A, B be skew shapes. We say that

$$
A \geq_{s} B \quad \text { if } \quad s_{A}-s_{B} \quad \text { is Schur-positive. }
$$

Original goal: characterize the Schur-positivity order \geq_{s} in terms of skew shapes.

Example of a Schur-positivity poset

If $B \leq_{s} A$ then $|A|=|B|$.
Call the resulting ordered set P_{n}. Then P_{4} :

More examples

P_{6} :

Known properties: Sufficient conditions

Sufficient conditions for $A \geq_{s} B$:

- Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon (1997)
- Andrei Okounkov (1997)
- Sergey Fomin, William Fulton, Chi-Kwong Li, Yiu-Tung Poon (2003)
- Anatol N. Kirillov (2004)
- Thomas Lam, Alex Postnikov, Pavlo Pylyavskyy (2005)
- François Bergeron, Riccardo Biagioli, Mercedes Rosas (2006)
- McN., Steph van Willigenburg $(2009,2012)$

Necessary conditions for Schur-positivity

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e. $\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i}$ for all i.

Examples. $\quad 331 \prec 421 \quad 21 \prec 32 \quad 33 \nprec 411$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Examples. $\quad 331 \prec 421 \quad 21 \prec 32 \quad 33 \nprec 411$
Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Examples. $\quad 331 \prec 421 \quad 21 \prec 32 \quad 33 \nprec 411$
Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$.

Necessary conditions for Schur-positivity

Notation. Write $\lambda \preccurlyeq \mu$ if λ is less than or equal to μ in dominance order, i.e.

$$
\lambda_{1}+\cdots \lambda_{i} \leq \mu_{1}+\cdots \mu_{i} \text { for all } i .
$$

Examples. $\quad 331 \prec 421 \quad 21 \prec 32 \quad 33 \nprec 411$
Theorem [McN. (2008)]. Let A and B be skew shapes. If $s_{A}-s_{B}$ is Schur-positive, then

$$
\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \text { for all } k .
$$

In fact, it suffices to assume that $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$.
Example.

$$
\begin{aligned}
& s_{A}=s_{41}+s_{32}+2 s_{311}+s_{221}+s_{2111} \\
& s_{B}=s_{41}+2 s_{32}+s_{311}+s_{221}
\end{aligned}
$$

So $s_{A}-s_{B}$ is not Schur-positive but $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$.

Equivalent to row overlap conditions

Let rects ${ }_{k, \ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.

$\operatorname{rects}_{3,1}(A)=2, \operatorname{rects}_{2,2}(A)=3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A)=\operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A)=\operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Equivalent to row overlap conditions

Let rects ${ }_{k, \ell}(A)$ denote the number of $k \times \ell$ rectangular subdiagrams contained inside A.

$\operatorname{rects}_{3,1}(A)=2, \operatorname{rects}_{2,2}(A)=3$, etc.

Theorem [RSvW]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A)=\operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A)=\operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A)=\operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

Theorem [McN]. Let A and B be skew shapes. TFAE:

- $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B)$ for all k;
- $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B)$ for all ℓ;
- $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B)$ for all k, ℓ.

| $s_{A}-s_{B}$ is Schur-pos. |
| :---: |$\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B) \Rightarrow$| $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$ |
| :--- |
| $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$ |
| $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$ |

Summary so far

Converse is very false.

Summary so far

Converse is very false.
Example.

Summary so far

Converse is very false.
Example.

New Goal: Find weaker algebraic conditions on A and B that imply the overlap conditions.
What algebraic conditions are being encapsulated by the overlap conditions?

Insight from a more general setting

Example. $\sum_{i<j<k} x_{i}^{6} x_{j}^{4} x_{k}^{9}$ is not symmetric but it is quasisymmetric. e.g.

$$
\text { coeff. of } x_{1}^{6} x_{2}^{4} x_{3}^{9}=\text { coeff. of } x_{5}^{6} x_{9}^{4} x_{2014}^{9}
$$

Definition. A formal power series f in variables x_{1}, x_{2}, \ldots is quasisymmetric if for all

- sequences $a_{1}, a_{2}, \ldots, a_{k}$ of exponents, and
- sequences $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ of indices, coeff. of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ in $f=$ coeff. of $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ in f.

Insight from a more general setting

Example. $\sum_{i<j<k} x_{i}^{6} x_{j}^{4} x_{k}^{9}$ is not symmetric but it is quasisymmetric. e.g.

$$
\text { coeff. of } x_{1}^{6} x_{2}^{4} x_{3}^{9}=\text { coeff. of } x_{5}^{6} x_{9}^{4} x_{2014}^{9} \text {. }
$$

Definition. A formal power series f in variables x_{1}, x_{2}, \ldots is quasisymmetric if for all

- sequences $a_{1}, a_{2}, \ldots, a_{k}$ of exponents, and
- sequences $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$ of indices, coeff. of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ in $f=$ coeff. of $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ in f.

Bases.

- Monomial quasisymmetric functions M_{α} :

Given a composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, e.g. $\alpha=(6,4,9)$,

$$
M_{\lambda}=\sum_{i_{1}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}} .
$$

- Gessel's fundamental quasisymmetric functions F_{α}, e.g,

$$
F_{32}=M_{32}+M_{212}+M_{122}+M_{1112}+M_{311}+M_{2111}+M_{1211}+M_{11111} .
$$

F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of shape A.

F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of shape A.
- Descent set $S(T)=\{3,5,8\}$.
- Descent composition $\operatorname{comp}(T)=3231$.

F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of shape A.
- Descent set $S(T)=\{3,5,8\}$.
- Descent composition $\operatorname{comp}(T)=3231$.

Then s_{A} expands in the basis of fundamental quasisymmetric functions as

Example.

$$
s_{A}=\sum_{\text {SYT } T} F_{\operatorname{comp}(T)}
$$

$$
s_{4432 / 31}=F_{3231}+\cdots
$$

F-basis of quasisymmetric functions

- Skew shape A.
- Standard Young tableau (SYT) T of shape A.
- Descent set $S(T)=\{3,5,8\}$.
- Descent composition $\operatorname{comp}(T)=3231$.

Then s_{A} expands in the basis of fundamental quasisymmetric functions as

Example.

$$
s_{A}=\sum_{\text {SYT } T} F_{\operatorname{comp}(T)}
$$

$$
s_{4432 / 31}=F_{3231}+\cdots
$$

Facts.

- The F form a basis for the quasisymmetric functions.
- So notions of F-positivity and F-support make sense.
- Schur-positivity implies F-positivity (converse fails at $n=4$).
- $\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$ implies $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$

New results: filling the gap

Theorem. [McN. (2013)]
$s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$
\Downarrow

$s_{A}-s_{B}$ is F-positive \Rightarrow| \Downarrow |
| :---: |
| $\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$ |\Rightarrow| $\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$ |
| :--- |
| $\operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell$ |
| $\operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell$ |

New results: filling the gap

Theorem. [McN. (2013)]
$s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$

Conjecture. The rightmost implication is iff.

New results: filling the gap

Theorem. [McN. (2013)]

$s_{A}-s_{B}$ is Schur-pos.	\Rightarrow	$\operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$		
\Downarrow		\Downarrow		$\operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k$
$s_{A}-s_{B}$ is F-positive	\Rightarrow	$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$	\Leftrightarrow	$\begin{aligned} & \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ & \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{aligned}$

Conjecture. The rightmost implication is iff.
Evidence. Conjecture is true for:

- $n \leq 12$ (others fail already at $n=4$);
- F-multiplicity-free skew shapes (as determined by Christine Bessenrodt and Steph van Willigenburg (2013));
- horizontal strips; ribbons whose rows all have length at least 2.
$n=6$ example

F-support containment

Row overlap reverse dominance

$n=12$

$n=12$ case has 12,042 edges.

Summary

Theorem. [McN. (2013)]

$$
s_{A}-s_{B} \text { is Schur-pos. } \Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)
$$

Conjecture. The rightmost implication is iff.

Summary

Theorem. [McN. (2013)]
$s_{A}-s_{B}$ is Schur-pos. $\Rightarrow \operatorname{supp}_{s}(A) \supseteq \operatorname{supp}_{s}(B)$

\Downarrow	\Rightarrow	\Downarrow	\Rightarrow	$\begin{array}{\|l} \hline \operatorname{rows}_{k}(A) \preccurlyeq \operatorname{rows}_{k}(B) \forall k \\ \operatorname{cols}_{\ell}(A) \preccurlyeq \operatorname{cols}_{\ell}(B) \forall \ell \\ \operatorname{rects}_{k, \ell}(A) \leq \operatorname{rects}_{k, \ell}(B) \forall k, \ell \end{array}$
$s_{A}-s_{B}$ is F-positive		$\operatorname{supp}_{F}(A) \supseteq \operatorname{supp}_{F}(B)$		

Conjecture. The rightmost implication is iff.

Thank you!

