The Schur-Positivity Poset

Peter McNamara

Includes joint work with Stephanie van Willigenburg
Algebra etc. Seminar
Bucknell University 20 September 2007

Papers available from
www.facstaff.bucknell.edu/pm040/

Outline

Shape of talk:

Outline

Shape of talk:

- Where to go from the basics: one direction
- Quick review: skew Schur functions, Schur-positivity
- Project 1: Necessary conditions for Schur-positivity
- Project 2: Special subposets
- Project 3 (Focus): Equality of skew Schur functions
- Open problems
- Quasi-symmetric functions
- Hall-Littlewood polynomials (coeffs in $\mathbb{Q}(t)$)
- Macdonald polynomials (coeffs in $\mathbb{Q}(q, t)$)
- Toric/Cylindric skew Schur functions
- Grothendieck polynomials
- Non-commutative symmetric functions

Each of these areas has a rich theory and important connections to other fields.

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- μ fits inside λ.
- Young diagram.

Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$
- μ fits inside λ.
- Young diagram. Example:

$$
\lambda / \mu=(4,4,3,1) /(3,1)
$$

- Semistandard Young tableau (SSYT)

The skew Schur function $s_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is then defined by

$$
s_{\lambda / \mu}=\sum_{\text {SSYT } T} x_{1}^{\# 1 \text { 's in } T} x_{2}^{\# 2 ' s ~ i n ~} T \ldots
$$

Example

$s_{4431 / 31}=x_{4}^{3} x_{5} x_{6}^{2} x_{7} x_{9}+\cdots$.

$$
\begin{aligned}
& \boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} . \\
& \boldsymbol{s}_{\mu} \boldsymbol{s}_{\nu}=\sum_{\lambda} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\lambda} .
\end{aligned}
$$

$c_{\mu \nu}^{\lambda}$ is the number of SSYT of shape λ / μ and content ν whose reverse reading word is a ballot sequence.

Key: $c_{\mu \nu}^{\lambda} \geq 0$.
$s_{\lambda / \mu}$ and $s_{\mu} s_{\nu}$ are Schur-positive.

$$
\begin{aligned}
& \boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} . \\
& \boldsymbol{s}_{\lambda} \boldsymbol{s}_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \boldsymbol{s}_{\nu} .
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} . \\
& \boldsymbol{s}_{\lambda} \boldsymbol{s}_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \boldsymbol{s}_{\nu} .
\end{aligned}
$$

When is $s_{\lambda / \mu}-s_{\sigma / \tau}$ or $s_{\lambda} s_{\nu}-s_{\sigma} s_{\tau} \quad$ Schur-positive?

$$
\begin{aligned}
& \boldsymbol{s}_{\lambda / \mu}=\sum_{\nu} c_{\mu \nu}^{\lambda} \boldsymbol{s}_{\nu} . \\
& \boldsymbol{s}_{\lambda} \boldsymbol{s}_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \boldsymbol{s}_{\nu} .
\end{aligned}
$$

When is $\quad s_{\lambda / \mu}-s_{\sigma / \tau}$ or $s_{\lambda} s_{\nu}-s_{\sigma} s_{\tau} \quad$ Schur-positive?
(Note: latter is a special case of the former.)
Goal: Characterize the shapes $\lambda, \mu, \sigma, \tau$ that make $s_{\lambda / \mu}-s_{\sigma / \tau}$ Schur-positive.

Example

$n=4$ Schur-positivity partially ordered set (Schur-positivity poset) on board.

Theorem
If $s_{A}-s_{B} \geq 0$ (i.e. Schur-positive), then
the number of $m \times n$ rectangles fitting inside $A \leq$ the number of $m \times n$ rectangles fitting inside B.

Example

$m=1, n=2$ in example on board.

Joint work with Stephanie van Willigenburg

Definition

A ribbon is a connected skew shape containing no 2×2 rectangle.

Example

Indexed as 23121.

Joint work with Stephanie van Willigenburg

Definition

A ribbon is a connected skew shape containing no 2×2 rectangle.

Example

Indexed as 23121.

Suffices to fix \#boxes and \#rows.

Example

Ribbons $(9,4)$ on board.

Definition

A skew shape A is said to be multiplicity-free if, when s_{A} is expanded as a linear combination of Schur functions, each coefficient is 0 or 1.

Theorem

The poset of multiplicity-free ribbons is always of the form

and is a convex subposet of the appropriate Schur-positivity poset.

Joint work with Stephanie van Willigenburg

Example

Look at Schur-positivity poset for $n=4$ again. There appear to be some skew shapes missing.

Joint work with Stephanie van Willigenburg

Example

Look at Schur-positivity poset for $n=4$ again.
There appear to be some skew shapes missing.

Question
When do two skew shapes have the same skew Schur function? Can we classify this in terms of the shapes of the skew shapes?

An answer to this question could be thought of as a classification of skew Schur functions.

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

The HDL series

Big Question: When is $s_{\lambda / \alpha}=s_{\mu / \beta}$?

- Lou Billera, Hugh Thomas, Steph van Willigenburg (2004):

Complete classification of equality of ribbon Schur functions

\sim

- HDL II: Vic Reiner, Kristin Shaw, Steph van Willigenburg (2006):
- It's enough to understand the equalities among connected skew diagrams.
- 3 operations for generating skew diagrams with equal skew Schur functions.
- For \#boxes ≤ 18, there are 6 examples that escape explanation.
- Necessary conditions, but of a different flavor. (This was the inspiration for Project 1.)
- HDL III: McN., Steph van Willigenburg (2006):
- An operation that encompasses the operation of HDL I and the three operations of HDL II.
- Theorem that generalizes all previous results. Explains all equivalences where $\#$ boxes ≤ 20.
- Conjecture for necessary and sufficient conditions for $s_{\lambda / \alpha}=s_{\mu / \beta}$. Reflects classification of HDL I for ribbons.

Skew diagrams (skew shapes) D, E. If $s_{D}=s_{E}$, we will write $D \sim E$.

Example

We want to classify all equivalences classes, thereby classifying all skew Schur functions.

The basic building block
Stanley's Enumerative Combinatorics, Volume II, Exercise 7.56(a)

Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.

The basic building block
Stanley's Enumerative Combinatorics, Volume II, Exercise 7.56(a)

Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.

Goal: Use this equivalence to build other skew equivalences.

The basic building block
Stanley's Enumerative Combinatorics, Volume II, Exercise 7.56(a)

Theorem
$D \sim D^{*}$, where D^{*} denotes D rotated by 180°.

Goal: Use this equivalence to build other skew equivalences.
Where we're headed:
Theorem
Suppose we have skew diagrams D, D^{\prime} and E satisfying certain assumptions. If $D \sim D^{\prime}$ then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*} .
$$

Main definition: composition of skew diagrams.

Composition of skew diagrams

Composition of skew diagrams

Composition of skew diagrams

Composition of skew diagrams

Composition of skew diagrams

$D \circ E=$

0

Theorem. If $D \sim D^{\prime}$, then

$$
D^{\prime} \circ E \sim D \circ E \sim D \circ E^{*} .
$$

Amalgamated Compositions

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Amalgamated Compositions

A skew diagram W lies in the top of a skew diagram E if W appears as a connected subdiagram of E that includes the northeasternmost cell of E.

Similarly, W lies in the bottom of E.
Our interest: W lies in both the top and bottom of E. We write $E=W O W$.

Amalgamated Compositions

$$
D \circ{ }_{W} E=\square \square
$$

Amalgamated Compositions

$D \circ{ }_{W} E=$

Amalgamated Compositions

$D \circ{ }_{w} E=$

${ }^{\circ}$ 日

Amalgamated Compositions

$D \circ{ }_{w} E=$

Amalgamated Compositions

$D \circ{ }_{w} E=$

$=$

${ }^{\circ}$ 日

$=$

15 boxes: first of the non-RSvW examples

Amalgamated Compositions

$D \circ{ }_{W} E=$

${ }^{\circ}$ 日

15 boxes: first of the non-RSvW examples If $W=\emptyset$, we get the regular compositions:

The hypotheses

In $E=$ WOW, W and O must satsify certain conditions, all of which are natural expect for:

Unwanted Hypothesis. In $E=W O W$, at least one copy of W has just one cell adjacent to O.

What are the results?

Theorem. Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=W O W$ satisfying all the hypotheses. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

What are the results?

Theorem. Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=$ WOW satisfying all the hypotheses. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

${ }^{\circ} \square$

What are the results?

Theorem. Suppose we have skew diagrams D, D^{\prime} with $D \sim D^{\prime}$ and $E=$ WOW satisfying all the hypotheses. Then

$$
D^{\prime} \circ{ }_{W} E \sim D \circ{ }_{W} E \sim D \circ W^{*} E^{*} .
$$

${ }^{\circ} \square$

0

is a skew equivalence with 145 boxes.

The key: An expression for $s_{D_{W} E}$ in terms of $s_{D}, s_{E}, s_{W}, s_{O}$.

Proof of expression uses:

- Hamel-Goulden determinants.
- Sylvester's Determinantal Identity.

Open problems

- Removing Unwanted Hypothesis (at least one copy of W has just one cell adjacent to O).

$$
D=\frac{\square}{\square \square} \quad E=\square \square \square
$$

$D{ }_{w} E$ has 23 boxes, and $D{ }_{\text {w }} E \sim D^{*}{ }_{\text {ow }} E$:

(Maple-based software of Anders Buch, John Stembridge)

Main open problem

Theorem.
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$.
$E_{i}=W_{i} O_{i} W_{i}$ satisfies all the hypotheses for all i.
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Then
$\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ{ }_{w_{3}} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ{ }_{w_{r}} E_{r}^{\prime}$.

Main open problem

Theorem.
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$.
$E_{i}=W_{i} O_{i} W_{i}$ satisfies all the hypotheses for all i.
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Then

$$
\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}
$$

Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies the natural hypotheses for all i,
- E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

Main open problem

Theorem.
Skew diagrams $E_{1}, E_{2}, \ldots, E_{r}$.
$E_{i}=W_{i} O_{i} W_{i}$ satisfies all the hypotheses for all i.
E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.
Then
$\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \sim\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ w_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}$.
Conjecture. [McN, van Willigenburg; inspired by main result of BTvW] Two skew diagrams E and E^{\prime} satisfy $E \sim E^{\prime}$ if and only if, for some r,

$$
\begin{aligned}
E & =\left(\left(\cdots\left(E_{1} \circ w_{2} E_{2}\right) \circ w_{3} E_{3}\right) \cdots\right) \circ w_{r} E_{r} \\
E^{\prime} & =\left(\left(\cdots\left(E_{1}^{\prime} \circ w_{2}^{\prime} E_{2}^{\prime}\right) \circ W_{3}^{\prime} E_{3}^{\prime}\right) \cdots\right) \circ w_{r} E_{r}^{\prime}, \text { where }
\end{aligned}
$$

- $E_{i}=W_{i} O_{i} W_{i}$ satisfies the natural hypotheses for all i,
- E_{i}^{\prime} and W_{i}^{\prime} denote either E_{i} and W_{i}, or E_{i}^{*} and W_{i}^{*}.

True when \#boxes ≤ 20.

Other open problems

- When does o preserve Schur-positivity, i.e. if

$$
s_{A}-s_{B} \geq 0
$$

when is

$$
s_{C \circ A}-s_{C \circ B} \geq 0,
$$

or

$$
s_{A \circ C}-s_{B \circ C} \geq 0 ?
$$

- Of the connected elements of the Schur-positivity poset, what's at the top?
- Given a positive linear combination $\sum_{\nu} a_{\nu} s_{\nu}$, how do we tell if it's a skew Schur function?
- Project 1: Necessary conditions involving rectangles fitting inside shapes.
- Project 2: Subposet of multiplicity-free ribbons is a grid-like chunk in the Schur-positivity poset.
- Project 3: Theorem about skew Schur equivalence that unifies and generalizes all previous results, and allows for a conjecture about the complete answer.

