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We derive a time-dependent exact solution of the free surface problem for the Navier–Stokes
equations that describes the planar extensional motion of a viscous sheet driven by inertia. The
linear stability of the exact solution to one- and two-dimensional symmetric perturbations is
examined in the inviscid and viscous limits within the framework of the long-wave or slender body
approximation. Both transient growth and long-time asymptotic stability are considered. For
one-dimensional perturbations in the axial direction, viscous and inviscid sheets are asymptotically
marginally stable, though depending on the Reynolds and Weber numbers transient growth can have
an important effect. For one-dimensional perturbations in the transverse direction, inviscid sheets
are asymptotically unstable to perturbations of all wavelengths. For two-dimensional perturbations,
inviscid sheets are unstable to perturbations of all wavelengths with the transient dynamics
controlled by axial perturbations and the long-time dynamics controlled by transverse perturbations.
The asymptotic stability of viscous sheets to one-dimensional transverse perturbations and to
two-dimensional perturbations depends on the capillary number �Ca�; in both cases, the sheet is
unstable to long-wave transverse perturbations for any finite Ca. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3094026�

I. INTRODUCTION

We consider the idealized free surface motion and stabil-
ity of a Newtonian planar sheet extending in an inertially
driven flow. Extensional flows appear in a wide variety of
applications: in the rheological characterization of viscoelas-
tic fluids,1–4 in jets produced by shaped charges,5,6 and in
manufacturing processes, such as fiber drawing, fiber spin-
ning, mixing processes, film blowing, and droplet formation.

The problem we examine is the planar analog of the
uniaxial extensional motion of an inertially driven cylindrical
jet or filament considered in previous studies.5–8 Frankel and
Weihs,5,6 applying their work to shaped charges, derived a
time-dependent exact solution for the free surface motion of
a Newtonian jet and examined the linear stability of this
solution within the Navier–Stokes equations. The extensional
motion of the unperturbed flow follows from the observation
that the jet produced by a shaped charge increases linearly in
the axial direction. Henderson et al.,7 applying their work to
droplet formation, extended Frankel and Weihs’ exact solu-
tion by including gravitational effects and conducted a re-
lated stability analysis. When a drop falls from its source it
draws out a filament that connects the drop to its source,7,9–15

as shown in Fig. 1; the solution considered by Henderson et
al. applies during the transient period when this filament is
cylindrical7,9,13 �between �d� and �f� in Fig. 1�. In experi-
ments, the prediction for the time-dependent thinning of a
Newtonian filament was verified by Henderson et al. and the
stability results correctly predicted features of the filament’s
breakup for several viscous fluids.7 Smolka et al.8 general-

ized the exact solution for a Newtonian filament7 to a vis-
coelastic filament using the Oldroyd-B constitutive model.
Their prediction for the time-dependent thinning of a vis-
coelastic filament was verified in experiments for several se-
midilute polymer solutions.8 Other studies have examined
the extensional motion of falling drops in the low Reynolds
number limit.17,18

Free surface extensional flows also appear in extensional
rheometry devices. Matta and Tytus1 developed a novel ap-
proach for measuring extensional viscosity by placing a fixed
volume of liquid between two circular plates and allowing
the bottom plate to fall from rest as the upper plate was held
stationary. This constant force experiment creates a thinning
filament, or liquid bridge, drawn out between the plates
whose extensional viscosity and stretch rate are time depen-
dent. The filament stretching rheometer,2,3 which is a modi-
fication of Matta and Tytus’ experiment, allows the separa-
tion rate of the plates to be controlled; in particular, steady
extensional viscosity is obtained by displacing the plates ex-
ponentially in time. Under these conditions, along the mid-
section of the filament the stretch rate �̇0 is constant �a de-
sirable feature for measuring extensional viscosity�, and the
axial stress increases while the diameter decreases exponen-
tially in time. In a recent analytical study, Matallah et al.4

compared the effects of separating the filament stretching
rheometer plates linearly versus exponentially in time for an
Oldroyd-B fluid. They found in the linear case that after a
transient period, the stretch rate and axial stress decrease in
time allowing longer filament lengths and stretch times to be
achieved compared to the exponential case. Although the
studies by Frankel and Weihs,5,6 Henderson et al.,7 Smolka et
al.,8 and Matallah et al.4 are applied to different physical
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systems, they describe the same kinematic flow in which the
time dependence of the stretch rate ��̇�t��1 / t� and that of
the filament length �L�t�� t� balance so as to conserve fila-
ment volume. In all of these studies, the flow is inertially
driven. The kinematics of an extensional flow can be quite
different when the flow is not inertially driven.1,17,18 In par-
ticular, in the filament rheometer experiments by Matta and
Tytus,1 �̇�1 / t and L�t�� t2 as a result of the flow starting
from rest, while in the low Reynolds number studies of fall-
ing drops,17,18 �̇�const and L�t��et.

Here we extend the work of Henderson et al.7 for a
uniaxial extensional flow to the case of an idealized planar
extensional flow. In particular, we derive an exact solution
for an inertially driven base flow with a planar free surface
using the full Navier–Stokes equations. The resulting stretch
rate of the flow will be shown to be inversely dependent on
time. Given the analogous nature of our work to Ref. 7, we
imagine that the idealized flow considered here could be ap-
plied to a planar sheet drawn out by a nearly constant volume
of fluid falling from a rectangular orifice �Fig. 2�. In particu-
lar, at low mean flow rate, the fluid mass at the rectangular
orifice will attain various equilibrium shapes until surface
tension can no longer support its weight and the mass begins
to fall. The formation of the planar sheet should occur over a
transient period as the fluid mass elongates; Fig. 2 illustrates
an instant in time during the sheet’s evolution. These dynam-
ics are similar to the way in which a falling drop of nearly
constant volume draws out a cylindrical filament �Fig.
1�.7,9–15 There is, of course, an important difference between
planar and cylindrical flows. In the cylindrical case, surface
tension through the hoop curvature is always present and
destabilizes the flow �referred to as the capillary insta-
bility19�, whereas in the planar case this effect is absent. For
this reason, we expect the stabilities of cylindrical and planar
extensional flows to be quite different. The dynamics of the
free end of the sheet, after the sheet becomes unstable, can
be described by Taylor’s model for the retraction and disin-
tegration of sheets,20 just as the dynamics of a free filament
after drop pinch-off �Figs. 1�h� and 1�i�� is analyzed by

Clanet and Lasheras;21 our study will not focus on these later
time dynamics.

The planar flows found in curtain coating, film casting,
and spray atomization have received considerable attention
in theoretical and experimental studies seeking to understand
their motion22–24 and stability.25–38 These flows are, however,
quite different than the planar extensional flow we consider
here in several ways, notably in the following:

�1� Curtain coating, film casting, and spray atomization
flows are steady, whereas the planar extensional sheet
flow we consider is time-dependent.

�2� The thickness of a curtain coating flow is tapered in the
axial direction, whereas the profile of our planar exten-
sional sheet is spatially uniform.

�3� The axial velocity of curtain coating and film casting
flows increases nonlinearly in the axial direction follow-
ing a prediction made by Taylor,22 whereas the axial
velocity of our planar extensional flow increases linearly
in the axial direction.

�4� The reciprocal of the stretch rate sets a time scale in a
planar extensional flow;4 curtain coating, film casting,
and spray atomization flows are not extensional flows
and therefore do not share this time scale.

These differences make it difficult to directly compare
the stability of curtain coating, film casting, and spray atomi-
zation flows to the planar extensional flow we consider here.
Other studies motivated by manufacturing processes of poly-
mer melts �e.g., film blowing� have examined the stability of
planar sheets and films either in steady multiaxial extension
or nearly multiaxial extensional flows.39,40 Romero41 ex-
tended Frankel and Weihs’ time-dependent solution to plastic
sheets subject to time-dependent biaxial extensional flow
with acceleration acting in the normal direction; he studied
linear stability using a primarily numerical approach. We will
use asymptotics to analyze the transient and long-time be-
haviors for the linear stability of a Newtonian sheet with
acceleration acting in the axial direction.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

0 28.5 56.3 69.5 84.3 102.0 105.5 107.0 110.8 123.3

FIG. 1. The formation and breakup of a filament drawn out by a drop that is
falling due to gravity. The filament is cylindrical during a transient period
between frames �d� and �f� �Refs. 7 and 16�. The relative time in ms is
provided below each image and the length of each image is 2.57 cm. The
kinematic viscosity, surface tension, and density of the fluid are 1.06 cm2 /s,
21.5 dyn/cm, and 0.928 g /cm3, respectively. The mean flow rate at the
nozzle is 6.8�10−3 cm2 /s and the Reynolds and Weber numbers of the
flow are O�1� and O�10−7�, respectively.

FIG. 2. A snapshot in time of an idealized planar sheet drawn out by a
nearly constant volume of fluid falling from a rectangular orifice. The sheet
is the analog of a cylindrical filament that forms behind a falling drop as
shown in Fig. 1.
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The perturbed motion of a planar sheet can be decom-
posed into symmetric and antisymmetric motions �also called
varicose and sinuous motions, respectively� as described by
Taylor.42 Varicose motions are symmetric about the planar
axis, whereas sinuous motions conserve the sheet thickness
while allowing variations in the sheet midplane. In this work,
we analyze the temporal linear stability of our exact solution
for a planar extensional sheet to symmetric perturbations im-
posed in the axial and transverse directions �see Figs. 3�b�
and 3�c�� while neglecting the influence of any surrounding
gas. Owing to the time dependence of the exact solution, the
stability analysis involves solving an initial value problem
rather than a normal-mode eigenvalue problem.5–7 Utilizing
the fact that our exact solution derived from the full Navier–
Stokes equations also satisfies the long-wave model for a
liquid sheet, we examine the sheet’s stability within the
framework of the simpler long-wave model for both inviscid
and viscous fluids. We will show that transient growth and
asymptotic stability of perturbations are important in under-
standing the dynamics of planar extensional sheets.

The paper is organized as follows. In Sec. II, the gov-
erning equations to the free boundary problem are described
and an exact solution for the unperturbed flow of a Newton-
ian sheet is derived. In Sec. III, we show that this exact
solution satisfies the long-wave model for a thin liquid sheet
and examine the stability of inviscid and viscous sheets in
the long-wave limit in Secs. V–VII. Conclusions are pro-
vided in Sec. VIII.

II. FREE BOUNDARY PROBLEM AND AN
EXACT SOLUTION

Here we formulate the free boundary problem for the
planar extensional motion of an inertially driven fluid sheet.
We will show that a closed-form time-dependent solution
exists given an appropriate initial state for the sheet. The
initial conditions can be generated by the action of dominant
forces in earlier stages of the dynamics, analogous to the
case of uniaxial extensional flows �e.g., a first-stage explo-
sive device for a shaped charge and gravity for the dripping
drop�.

Consider the motion of an incompressible viscous fluid
governed by the Navier–Stokes equations

���tu + �u · ��u� = − �p + ��2u − �g , �1a�

� · u = 0, �1b�

where � is the density, u= �u ,v ,w� is the velocity field with
u, v, and w being the axial, transverse, and in-plane velocity
components, p is the pressure, � is the dynamic viscosity,
and g=gêx is gravity with êx directed upward. It will be seen
that gravity is not the primary driving force in this problem,
but if present, it must act in the direction that the flow is
stretching, i.e., the axial direction.

We examine symmetric motions of a planar liquid sheet
whose boundaries are free surfaces, denoted by z
= �h�x ,y , t�, with examples shown in Fig. 3. At the free
surfaces, z= �h, there are three boundary conditions:

�i� the kinematic condition,

�th + u�xh + v�yh = w , �2a�

�ii� the normal stress condition,

n · �T − pI� · n = − � � · n , �2b�

where n= � �−�xh ,−�yh ,1� /���xh�2+ ��yh�2+1 is the
outward unit normal vector to the free surface at z
= �h, T=���u+�uT� is the extra stress field for a
Newtonian fluid, I is the identity tensor, and � is the
coefficient of surface tension, and

�iii� the tangential stress condition,

n · �T − pI� · t1 = 0, �2c�

n · �T − pI� · t2 = 0, �2d�

corresponding to the tangent vectors to the free sur-
face t1= �1,0 ,�xh� and t2= �0,1 ,�yh�. For symmetric
motions of the liquid sheet23 we require

w = 0, �zp = 0, �zu = 0 at z = 0. �3�

Equations �1a�, �1b�, �2a�–�2d�, and �3� define the free
boundary problem for the motion of a Newtonian
sheet that is infinite in extent. Since only symmetric
motions of the sheet will be considered here, the flow
may be analyzed from z=0 to z=h without loss of
generality.

For the unperturbed flow we shall assume that the sheet
is spatially uniform, consistent with previous studies on cy-
lindrical liquid filaments,5–8
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FIG. 3. Schematic of a liquid sheet with free surfaces located at z= �h: �a� unperturbed z= �h�t�; �b� symmetric perturbations in the axial direction,
z= �h�x , t�; and �c� symmetric perturbations in the transverse direction, z= �h�y , t�.

042101-3 On the planar extensional motion Phys. Fluids 21, 042101 �2009�

Downloaded 10 Dec 2009 to 134.82.60.113. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



�xh = �yh = 0, �4�

as shown in Fig. 3�a�. We consider a velocity field with the
form

u = �u,v,w� = ��̇�t�x + ��t�,0,− �̇�t�z� , �5�

which is a combination of a planar extensional flow
��̇�t�x ,0 ,−�̇�t�z� where �̇�t� represents the stretch rate,39,43

and a spatially uniform flow ���t� ,0 ,0� which is required to
balance gravitational effects7 as we will show next. For a
spatially uniform sheet, the velocity field �Eq. �5�� conserves
mass �Eq. �1b�� and satisfies the boundary conditions at the
free surface �Eqs. �2a�, �2c�, and �2d�� and midplane �Eq.
�3��. The x axis is the distinguished direction in which we
assume extension will take place; in the y direction there is
no flow. The extra stress field associated with this velocity
field is diagonal with components

Txx = 2��̇�t�, Tyy = 0, Tzz = − 2��̇�t� . �6�

Using the planar extensional velocity field �Eq. �5��, the
free boundary problem for the unperturbed flow is described
by the Navier–Stokes equations �1a� in the x, y, and z direc-
tions

�p

�x
= − ��d�̇

dt
+ �̇2�x − ��d�

dt
+ �̇� + g� , �7a�

�p

�y
= 0, �7b�

�p

�z
= ��d�̇

dt
− �̇2�z , �7c�

and the kinematic �Eq. �2a�� and normal �Eq. �2b�� boundary
conditions evaluated at z=h�t� become

dh

dt
= − �̇h , �7d�

p�x,y,h,t� = − 2��̇ + pamb, �7e�

where we have used the fact that an unperturbed sheet is
spatially uniform �h=h�t�� and pamb is the ambient pressure.
The tangential boundary conditions �2c� and �2d� are identi-
cally satisfied by the planar extensional velocity field �Eq.
�5��. From Eq. �7b� we conclude that p= p�x ,z , t�.

Taking the derivative of Eq. �7e� with respect to x yields

�xp = 0 at z = h�t� . �8�

Substituting this into Eq. �7a� then collecting powers of x
results in two first-order ordinary differential equations
�ODEs�,

d�̇

dt
+ �̇2 = 0, �9a�

d�

dt
+ �̇� + g = 0, �9b�

which can be solved exactly. In Eq. �9b� we see the need for
the extra axial velocity component ��t� to balance the gravi-

tational term; in the absence of �, the velocity field �Eq. �5��
is inconsistent. The solutions of Eq. �9� are

�̇�t� =
1

t + t0
and ��t� = −

g

2
�t + t0� −

x̌

t + t0
, �10�

where �̇0 is the initial stretch rate, t0=1 / �̇0�0 is consistent
with stretching in x for all later times, and x̌ is a fixed axial
position in the laboratory reference frame. It follows that the
corresponding velocity components �Eq. �5�� are

u�x,t� =
x − x̌

t + t0
−

g

2
�t + t0�, v = 0, w�z,t� = −

z

t + t0
.

�11a�

The position x̌ can be interpreted in terms of the initial con-
ditions as follows: if at t=0 x� is the axial position where the
axial velocity vanishes, then x̌ can be obtained in terms of x�
from Eq. �11a�,

u�x�,0� = 0 → x̌ = x� − 1
2gt0

2;

in the absence of gravity x̌=x�. Using the kinematic condi-
tion �7d�, the free surface is described by

h�t� =
Ht0

t + t0
, �11b�

where h�0�=H�0 is the initial half-thickness of the sheet.
Integrating Eq. �7c� in z and then using the normal stress
condition Eq. �7e� yields the pressure field

p�z,t� = �
h2 − z2

�t + t0�2 −
2�

t + t0
+ pamb, �11c�

which is independent of x and the surface tension �, as one
would expect for a planar sheet.

Equations �11a�–�11c� describe an exact solution to the
free boundary problem of an infinite planar sheet of Newton-
ian fluid stretching as a planar extensional flow. This solution
is valid for any value for the viscosity ��	0� and is inde-
pendent of surface tension. The solution is also well defined
for all values of axial acceleration g. If gravity is present,
then the sheet will be subject to constant acceleration while it
stretches. To see this, we construct a Lagrangian description
of the flow, denoting the position of a fluid particle in the
sheet by �x�t� ,y�t� ,z�t��. The motion of a typical fluid par-
ticle, starting from position �x0 ,y0 ,z0� at t=0, is found by
solving dx /dt=u,

dx

dt
=

x − x̌

t + t0
−

g

2
�t + t0�,

dy

dt
= 0,

dz

dt
= −

z

t + t0
. �12�

The result is

x�t;x0� = −
1

2
g�t + t0�2 + � x0 − x̌ + 1

2gt0
2

t0
��t + t0� + x̌ ,

�13a�

y�t;y0� = y0, �13b�
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z�t;z0� =
z0t0

t + t0
, �13c�

where 	z0	
H. Interpreting these results, we find from Eq.
�13a� that each fluid particle is falling in a uniform gravita-
tional field and from Eq. �13b� that there is no flow in the
transverse direction. Equation �13c� also has a simple inter-
pretation. Since the velocity gradient in the axial direction
��u /�x=1 / �t+ t0� following Eq. �11a�� is positive and inde-
pendent of x, the sheet is stretching homogeneously in the
vertical direction. In order to conserve mass, the stretching of
the sheet must be balanced by contraction in the thickness,
which accounts for the time dependence of the free surface in
Eqs. �11b� and �13c�; i.e., consider a volume element, �V
=�x�y�z, we see from Eq. �13� that the O�1 / t� thinning in
the z direction is balanced by linear stretching in the x direc-
tion.

It is worth noting that inertia drives the unperturbed flow
by setting the time dependence of the stretch rate �̇; this is
evident from the ODE for �̇ �Eq. �9a�� which contains only
inertial terms from the axial momentum equation �7a�. Given
the coupling of the free surface �h� to the stretch rate in Eq.
�7d�, we find that inertia also sets the time scale of h where
both the stretch rate and free surface are monotonically de-
creasing functions of time. Given the coupling of the veloc-
ity field to the stretch rate and ��t� �Eq. �5��, we find that the
velocity is driven by inertial and gravitational effects.

The planar extensional flow �Eq. �11�� is the analog of a
uniaxial extensional flow studied by Henderson et al.7 who
applied their work to the free surface motion of a spatially
uniform filament drawn out by a viscous drop dripping from
its source �see Fig. 1�. We propose an analogous experiment
in which a planar sheet of fluid is drawn out by a constant
volume of fluid dripping from a rectangular orifice �see Fig.
2� with the experimental control parameters given by the
initial stretch rate and sheet thickness �which can be set by
adjusting the width of the rectangular orifice�. We recognize
that maintaining the base flow �Eq. �11�� will be difficult
with a Newtonian fluid for two reasons. First, our stability
analysis suggests that inviscid and viscous sheets are un-
stable to transverse perturbations. Second, the experiment
would be limited to a finite-size sheet where the behavior of
the flow could be quickly overwhelmed by edge effects. The
base flow could be more experimentally feasible with strain-
hardening materials �e.g., viscoelastic fluids and polymer
melts� that display high Trouton ratios in extensional
flows.2,3 This stabilizing mechanism could dampen the edge
effects expected in a finite-sized sheet. Nevertheless, this is
the first study that we are aware of that examines inertially
driven planar extensional sheets, and the Newtonian analysis
is the logical first step to analyzing this flow.

Next, we show that the exact solution to the Navier–
Stokes equations �11� also satisfies the long-wave model for
a thin liquid sheet. Using this fact, we investigate the stabil-
ity of the exact solution in the long-wave limit.

III. LONG-WAVE MODEL

Equation �11� describes an exact solution of the full
equations of free surface flow for a Newtonian sheet; no
approximations or simplifications have been made to the
governing equations so far. The long-wave model or slender
body equations are derived based on the assumption that the
sheet is very thin compared to the length scale of variations
along the sheet. Solution �11� clearly fits this framework as
the sheet is uniform in space and it becomes progressively
thinner as time increases �Eq. �11b��. So, we will make use
of the long-wave model as a simpler framework to work
within for analytically studying the stability of the sheet so-
lution to symmetric perturbations.

We begin by nondimensionalizing the governing equa-
tions �1a�, �1b�, �2a�–�2d�, �3�, and �6� with respect to a char-
acteristic axial length scale L, the initial sheet half-thickness
H, and a typical axial velocity U,

x = Lx̂, y = Lŷ, z = Hẑ, h = Hĥ ,

u = Uû, v = Uv̂, w =
HU
L

ŵ, t =
L
U

t̂, p =
�U
L

p̂ ,

where the hat notation refers to dimensionless quantities. Us-
ing these scaled variables the governing equations �1a�, �1b�,
�2a�–�2d�, �3�, and �6� will depend on a few key dimension-
less parameters,

Re =
�UL

�
, We =

�U2L2

H�
, Fr =

U
�gL

. �14�

These are the Reynolds number, which compares inertial to
viscous effects, the Weber number, which compares inertial
to surface tension effects, and the Froude number. The prin-
cipal time scale in the problem is the reciprocal of the initial
stretch rate t0=1 / �̇0, which we use to define the velocity
scale, namely, U=L�̇0.

Long-wave asymptotics in the limit of small aspect ratio,
H /L→0, can be used to reduce the governing equations to a
leading order system for the thickness of the sheet, h�x ,y , t�,
and the in-plane, thickness-averaged velocity, u

�u�x ,y , t� ,v�x ,y , t�� �dropping the hats for convenience�,

�th + � · �hu� = 0, �15a�

�tu + u · �u =
1

h Re
� · �h��u + �uT + 2�� · u�I��

+
1

We
� ��2h� −

1

Fr2 êx, �15b�

see Ref. 44 for a detailed derivation. A similar derivation is
used to develop simplified equations for a thin, axisymmet-
ric, fluid cylinder.45 For solutions independent of y and with
v=0 �i.e., h=h�x , t� ,u= �u�x , t� ,0��, these equations reduce
to the more familiar one-dimensional �1D� equations for con-
servation of mass and momentum in the axial direction,46,47

�th + �x�hu� = 0, �16a�
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�tu + u�xu =
4

h Re
�x�h�xu� +

1

We
�xxxh −

1

Fr2 . �16b�

Comparable equations for extensional flow of axisymmetric
jets with surface tension, inertia, and gravity were obtained
in Ref. 48.

The nondimensional form of the exact solution for u
�Eq. �11a�� and h �Eq. �11b�� derived from the full Navier–
Stokes equations, which we now refer to as u0 and h0, are

h0�t� =
1

t + 1
, u0�x,t� =

x − x̌

t + 1
−

t + 1

2 Fr2 . �17�

One can easily verify that the exact solution �17� also satis-
fies the long-wave model �Eqs. �15� and �16��. Next, working
within the framework of this long-wave model, we analyze
the linear stability of the exact time-dependent solution.

IV. FORMULATION OF THE LINEAR STABILITY
PROBLEM

We consider the linear stability of the exact solution �17�
within the simpler framework of the long-wave model �Eq.
�15�� rather than the full Navier–Stokes equations. Using a
temporal analysis we consider the stability of inviscid and
viscous planar sheets to symmetric perturbations acting in
the axial �x� and transverse �y� directions. Perturbing around
the solution in Eq. �17�,

h�x,y,t� = h0�t� + �h1�x,y,t� , �18a�

u�x,y,t� = u0�x,t� + �u1�x,y,t� , �18b�

v�x,y,t� = 0 + �v1�x,y,t� , �18c�

with �1; then substituting into Eq. �15� and keeping only
linear terms in the perturbed variables results in a set of
linearized equations in terms of h1, u1, and v1,

�th1 + � x − x̌

t + 1
−

t + 1

2 Fr2��xh1 +
h1

t + 1
+

1

t + 1
�xu1

+
1

t + 1
�yv1 = 0, �19a�

�tu1 + � x − x̌

t + 1
−

t + 1

2 Fr2��xu1 +
u1

t + 1

=
1

Re
�4�xh1 + 4�xxu1 + 3�xyv1 + �yyu1�

+
1

We
��xxxh1 + �xyyh1� , �19b�

�tv1 + � x − x̌

t + 1
−

t + 1

2 Fr2��xv1

=
1

Re
�2�yh1 + �xxv1 + 3�xyu1 + 4�yyv1�

+
1

We
��yyyh1 + �xxyh1� . �19c�

For convenience we change variables to characteristic coor-
dinates suggested by the left-hand sides of Eq. �19�. Let
�x , t�→ �� ,�� with

� =
x − x̌

�
+

�

2 Fr2 , � = t + 1, �20�

so that

�x =
1

�
��, �t = �� − � x − x̌

�2 −
1

2 Fr2���. �21�

In particular, the convective derivative �t+u0�x→��. In these
variables the exact solution takes the form h0=1 /� and u0

=�−� /Fr2. Then Eq. �19� can be simplified to

��h1 +
h1

�
+

1

�2��u1 +
1

�
�yv1 = 0, �22a�

��u1 +
u1

�
=

1

Re
�4

�
��h1 +

4

�2���u1 +
3

�
��yv1 + �yyu1�

+
1

We
� 1

�3����h1 +
1

�
��yyh1� , �22b�

��v1 =
1

Re
�2�yh1 +

1

�2���v1 +
3

�
��yu1 + 4�yyv1�

+
1

We
��yyyh1 +

1

�2���yh1� . �22c�

Note that this system is independent of the Froude number.
We look for solutions h1, u1, and v1 in the form of Fou-

rier transform integrals

h1��,y,�� = �
−�

� �
−�

�

H1�k�,ky,��ei�k��+kyy�dk�dky , �23a�

u1��,y,�� = �
−�

� �
−�

�

U1�k�,ky,��ei�k��+kyy�dk�dky , �23b�

v1��,y,�� = �
−�

� �
−�

�

V1�k�,ky,��ei�k��+kyy�dk�dky , �23c�

where the wavenumbers k�, ky are real. Noting that the sys-
tem �22a�–�22c� has terms with coefficients that depend only
on � �and not � and y�, then substituting Eq. �23� into Eq.
�22� reduces the coupled system of partial differential equa-
tions for h1, u1, v1 to a coupled system of ODEs for the
Fourier coefficients H1, U1, V1,

dH1

d�
= −

H1

�
−

ik�

�2 U1 −
iky

�
V1, �24a�

dU1

d�
= −

U1

�
−

1

Re
�−

4ik�

�
H1 +

4k�
2

�2 U1 +
3k�ky

�
V1

+ ky
2U1� −

i

We
� k�

3

�3 +
k�ky

2

�
�H1, �24b�
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dV1

d�
= −

1

Re
�− 2ikyH1 +

k�
2

�2 V1 +
3k�ky

�
U1 + 4ky

2V1�
−

i

We
� k�

2ky

�2 + ky
3�H1. �24c�

We make a few comments before proceeding:

�1� Standard temporal normal-mode stability analyses about
a steady base solution involve perturbations that are ex-
ponentials in time; stability is defined in terms of a dis-
persion relation that relates the exponential growth rate
to the perturbation wavenumber. The temporal stability
analysis presented here is different in two ways. First,
the base solution is spatially and temporally dependent
�Eq. �17��. Second, we do not a priori assume the form
of the temporal dependence of the perturbations �Eq.
�23��. In this analysis, stability depends on the temporal
growth of the perturbed variables relative to the base
solution, in particular, we classify the solution as stable
if v1 is a priori bounded and h0�h1 and u0�u1 for all
time. The connection between the temporal dependence
of the perturbed variables and wavenumber �k� ,ky� will
be made explicit in our analysis. Our main focus will be
on the behavior of h1 in the presentation that follows.

�2� The characteristic axial coordinate � �Eq. �20�� corre-
sponds to the Lagrangian description �Eq. �13a�� for the
unperturbed flow. The extensional stretching of the sheet
in the axial direction gets mapped onto a fixed interval
in terms of �. In writing Eq. �23�, we assume that spatial
perturbations will follow the same stretching; this ap-
proach has been used in Refs. 5–7. Converting to the
Eulerian frame, assuming k� is constant implies that the
perturbation wavelength will be observed to increase lin-
early with time, �=2� /kx with kx=k� /�.

�3� The system �24a�–�24c� can be written in vector form as

X = �H1

U1

V1
,

dX

d�
= M���X . �25�

For all finite �, this is a nonautonomous non-normal sys-
tem, i.e., MMT�MTM, and hence the stability analysis
can be expected to be nontrivial.49–51

�4� Although the Fourier coefficients H1, U1, V1 are func-
tions of k�, ky, � we will suppress the dependence on the
k�, ky parameters for notational convenience hereafter.

�5� In terms of �, the initial time is �=1, see Eq. �20�.

To quantify the influence of perturbations imposed in the
axial and transverse directions, we first present the 1D analy-
sis with perturbations imposed in only k� or ky, before dis-
cussing the full two-dimensional �2D� analysis.

V. 1D PERTURBATIONS IN THE AXIAL DIRECTION

We begin by considering perturbations that are solely in
the axial direction, that is, they are independent of the trans-
verse direction and have ky =0. With ky =0, the Eqs.
�24a�–�24c� reduce to

dH1

d�
= −

H1

�
−

ik�

�2 U1, �26a�

dU1

d�
= −

U1

�
−

4

Re
�−

ik�

�
H1 +

k�
2

�2 U1� −
ik�

3

�3 We
H1, �26b�

dV1

d�
= −

k�
2

�2 Re
V1. �26c�

Observe that Eq. �26c� decouples from the rest of Eq. �26�.
For initial condition V1�1�=V0, the explicit solution of Eq.
�26c� is

V1��� = V0ek�
2 Re−1��−1−1� �27�

and 	V1���	� 	V0	 for all ��1; therefore infinitesimal pertur-
bations to v remain bounded by the initial disturbance am-
plitude for all times. Hence the flow is linearly stable with
respect to such perturbations in this velocity component.

We will show that in all cases �short/long waves and
viscous/inviscid�, the long-time asymptotics of perturbations
to the sheet thickness are the same,

H1��� �
�

�
+ o��−1� as � → � . �28�

Relative to the base solution h0���, one could naively believe
that Eq. �28� implies that all 1D perturbations in the axial
direction have marginal asymptotic stability. That is, the ratio
	H1 /h0	 is bounded as �→�, but as we will show, the coef-
ficient � can become large as a result of transient growth of
the perturbations51–56 and more careful consideration of the
stability is needed.

To quantify this behavior we define an asymptotic am-
plification factor � as the maximal value �over all choices of
initial conditions� of the absolute ratio,

� 
 lim
�→�

�H1���/h0���
H1�1�/h0�1�

� . �29�

This parameter is similar in form to the growth ratios defined
in Ref. 57 and describes the ratio of the relative size of a
perturbation for long times compared to its initial size. We
normalize the perturbations so that H1 starts with unit mag-
nitude at �=1,

	H1�1�	 = 1. �30�

While in general H1��� can be complex-valued, for conve-
nience �and without significant loss of generality� we will
pick initial conditions to make H1 real and U1 pure imagi-
nary; the form of Eqs. �26a� and �26b� shows that these
forms will be maintained for all time. This will be beneficial
for distinguishing monotonic versus oscillatory behaviors.

We note that Eq. �29� simplifies to the limit of 	�H1���	,
consistent with the form given in Eq. �28�. This parameter
determines if the long-time perturbations are indeed uni-
formly small starting from small initial conditions. As such �
gives a measure of the sustained influence of the transient
growth. This behavior has a nontrivial relationship to the
initial conditions and transient time scales. In particular, the
first time scale is set by the time when the initial conditions
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are applied �Eq. �30�� and the other relevant times will be-
come clear in our discussion of each of the following cases.

Focusing on the remaining system �26a� and �26b�, to
better understand the parameter dependence of the problem
for k��0 it is convenient to rescale these equations using

H1��� = H�T�, U1��� = � k�

We
�1/3

U�T�, � = � k�
4

We
�1/3

T ,

�31�

yielding

dH

dT
= −

H

T
−

iU

T2 , �32a�

dU

dT
= −

U

T
− ��−

iH

T
+

U

T2� −
iH

T3 , �32b�

where the only remaining explicit parameter is

� =
4

Re
�k�

2 We�1/3, �33�

and the initial condition �30� becomes

H�T0� = 1 at T0 = �We

k�
4 �1/3

. �34�

System �32a� and �32b� can also be combined into a
second-order ODE for H�T�,

d2H

dT2 + � 4

T
+

�

T2�dH

dT
+ � 2

T2 +
1

T5�H = 0, �35�

where U�T� can be obtained in terms of derivatives of the
solution H�T�. This form is particularly convenient for some
of our observations on properties of the perturbations of the
sheet thickness.

A. Inviscid problem

The inviscid problem �Re=�� is given by setting �=0 in
Eq. �35�. This reduced equation can be solved explicitly in
terms of Bessel functions of order 1/3 to yield

H�T� = �a1J1/3� 2
3T−3/2� + a2Y1/3� 2

3T−3/2��T−3/2, �36�

and similarly, U�T� can also be written in terms of these
Bessel functions. The constants of integration a1, a2 are de-
termined by the initial values of the perturbations H, U.
Making use of Eq. �36� we can obtain complete stability
results explicitly for this case.

If T0 is sufficiently large so that perturbations begin in
the long-time regime, then applying the initial condition �34�
to the asymptotic form of Eq. �36� valid for T→� yields

H�T� �
b1

T
�1 −

1

6T3� +
b2

T2�1 −
1

12T3� + O�T−7� , �37�

where b1�T0. Then Eq. �37� gives the approximate solution
for T0
T��. Consequently, for T→� we have H�T0 /T
and Eq. �31� yields the bound

H1��� 

1

�
as � → � . �38�

The definition of T0 �Eq. �34�� shows that large T0 corre-
sponds to small wavenumbers k�. Hence �→1 for k�→0
and we conclude that long-wave perturbations are indeed
marginally stable.

The case when T0 is small is more interesting; applying
the initial condition �34� to the asymptotic form of Eq. �36�
valid for T→0 yields

H�T� �
�T/T0�−3/4

cos �0
cos�2

3
�T−3/2 − T0

−3/2� + �0� , �39�

where �0 is a phase constant related to the initial condition
set on U�T0�. The oscillatory nature of this solution is shown
in Fig. 4. The period of the oscillations is nonuniform with
the frequency diverging for T→0 and decreasing monotoni-
cally as time increases. Indeed H�T� will have a “final” zero
corresponding to the first zero of a1J1/3�S�+a2Y1/3�S� where
S is inversely related to T, S= 2

3T−3/2. Setting the argument of
the cosine in Eq. �39� to � /2 yields an estimate for this last
zero. Note that this value can be arbitrarily large for appro-
priate �0, however; then separation to the previous zero will
also be very large. For the purpose of establishing a uniform
criterion by which we can divide H�T� into oscillatory versus
long-time regimes �as represented by Eq. �37��, we note that
the next-to-the-last zero of H�T� can be bounded from above
�independent of �0� in terms of the first positive zero of the
Bessel function Y1/3�S1�=0 with S1�1.353. This sets a time
scale that defines the effective end of oscillatory dynamics,

T1 
 � 3
2S1�−2/3 � 0.6238. �40�

T1 is an important time scale for describing the relative
growth of perturbations. Equation �39� applies for T�T1 and
describes algebraically decaying oscillations. However, rela-
tive to h0 �which decays like O�T−1��, the relative amplitude
of H is increasing; namely, we observe transient growth
H /h0=O�T1/4� for T0
T�T1.

This result can be made precise in terms of the specific
form of the long-time asymptotics �Eq. �37�� corresponding
to solution �39�,

O(T −3/4)

O(T −1)

T

|H
(T

)|

T0 T1 10 102 103 104

10−4

10−2

1

FIG. 4. Axial perturbations for inviscid sheets: Evolution of the perturbation
amplitude in the short-wave case, k��k�,1 or equivalently T0�T1.
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H�T� � ��4� sin��0 +
5�

12
−

2

3
T0

−3/2�T0
3/4

32/3��2/3�cos �0
� 1

T

+ O�T−2�, T → � . �41�

Writing Eq. �41� in terms of �, we obtain an upper bound on
the long-time magnitude of the perturbations to the sheet
thickness, for �→�

	H1���	 

�

�
with ��k�� = O�k�

1/3 We−1/12� . �42�

Note that �→� as k�→�, as shown in Fig. 5. The minimum
wavenumber for this regime is given by transforming the
condition T0�T1 into unscaled variables, i.e.,

k� � k�,1 
 �We

T1
3 �1/4

� 1.42 We1/4. �43�

Therefore initial perturbations of fixed amplitude and suffi-
ciently short wavelength �k��k�,1� can yield arbitrarily large
deviations to the long-time sheet thickness. In contrast, if
k��k�,1 then perturbations are well described by Eq. �38� for
all times and do not grow from their initial amplitude.

We interpret this short-wave instability as being driven
by the competing effects of inertia and surface tension where
increasing the effect of inertia relative to surface tension in-
creases We and delays the instability to higher wavenumber.
In the limit of high inertia relative to surface tension �We
→��, this transient growth mechanism �Eq. �42�� is absent
for all wavenumbers k���, and the sheet is marginally
stable. Hence for finite We, inviscid sheets are weakly un-
stable �i.e., maxk�

��k��→�� to perturbations imposed in the
axial direction.

This analysis of the time-dependent motion of an invis-
cid sheet to 1D axial perturbations uses a weaker definition
of stability that distinguishes asymptotic marginal stability
from instability through the transient growth parameter �or
amplification factor� � rather than the typical normal-mode
eigenvalue analysis which assumes exponential time depen-

dence of the perturbation. As a result, direct comparison to
other studies of infinite inviscid sheets26,27 is not possible.

B. Viscous problem

For ��0 Eq. �35� does not have a closed-form solution,
but we can proceed with the stability analysis based on local
asymptotics of its general solution. The local asymptotic ex-
pansion for the solutions of Eq. �35� for T→� is

H�T� �
c1

T
�1 +

�

T
−

1 −
3

2
�3

6T3 −
� ln T

T
�1 +

�

T
+ ¯��

+
c2

T2�1 +
�

T
+

�2

2T2 −
1 – 2�3

12T3 � . �44�

Note that if �=0, this solution reduces to Eq. �37�, while the
influence of finite viscosity is to add logarithmic and alge-
braic terms that yield small perturbations to Eq. �37� for T
→�. If the initial time T0 is sufficiently large for Eq. �44� to
apply, then b1�T0, and like Eq. �38� we can conclude that
��1. Therefore, viscous long-wave perturbations �k�→0�
are marginally stable.

The influence of viscosity has a more interesting effect
on short-wave perturbations �k�→��; since T0 is inversely
related to k� by Eq. �34�, this corresponds to T0→0. Using
the Wentzel-Kramers-Brillouin �WKB� theory,58 we obtain
the solution of Eq. �35� for T→0 to be

H�T� �
�T/T0�−3/4

cos �0
exp��

2
� 1

T
−

1

T0
��

�cos�2

3
�T−3/2 − T0

−3/2� −
1

4
�2�T−1/2 − T0

−1/2� + �0� ,

�45�

where �0 is a phase parameter. If �=0, then Eq. �45� reduces
to Eq. �39�. The time evolution of the perturbation amplitude
	H�T�	 for a moderate value of k� is shown in Fig. 6.

We do not present a connection formula to relate the
limiting behaviors for T→0 and T→� in this problem.

O(k1/3
χ )

α ≈ 1

kχ

α

10kχ,10.110−210−3

4

3

2

1

0

FIG. 5. The amplification factor ��k�� for inviscid sheets with respect to 1D
perturbations in the axial direction. Asymptotes for the short- and long-wave
limits are shown by dashed lines.

O(T −3/4 exp(ω/[2T ]))

O(T −1)

T

|H
(T

)|

10310210T2T1T0

1

10−2

10−4

10−6

FIG. 6. Axial perturbations for the low viscosity case: Time evolution of the
perturbation amplitude with transient and long-time asymptotes, Eqs. �45�
and �44�, respectively.
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However, from a simple approximate patching argument by
setting Eq. �45� equal to Eq. �28� at T=T1, i.e., H��T0 /T,
we find that the long-time behavior of the solution �45� for
T→� obeys

	H�T�	 � T0
3/4 exp�−

�

2T0
� 1

T
, �46�

where the constant of proportionality should be independent
of � for �→0. Consequently we obtain the functional form
of the amplification factor for large k�,

��k�� �
k�

1/3

We1/12e−2k�
2/Re. �47�

This expression reduces to Eq. �42� for Re→�. The ampli-
fication factor is shown in Fig. 7. As before, for the transient
behavior to be observed, the initial time must be small, T0

�T1, given by condition �43�. Note that for this case there is
a finite range of wavenumbers where perturbations exhibit
transient growth ���1� on 0�k��k�,2 where k�,2

�O��Re� as Re→�. As Re→�, the inviscid behavior is
approached, but for any fixed value of Re, ��k�� is uniformly
bounded, as shown in Fig. 7. Consequently, we conclude that
axial perturbations in the low but finite viscosity case are
marginally stable.

The above discussion applies for �→0; our analysis
shows that higher viscosity flows �with larger �� will exhibit
different behavior. For �→0, we can apply the argument
used for Eq. �39� on Eq. �45� to estimate an upper bound on
the time when oscillatory behavior ends as T1, as given by
Eq. �40�. However, in the case of higher viscosity there is
another consideration which can further limit the oscilla-
tions. Observe that the Liouville–Green transformation58,59

can be applied to Eq. �35� to write it as a Schrödinger-type

equation for H̃�T� under the change of variables H�T�
=T−2H̃�T�exp� 1

2�T−1�,

d2H̃

dT2 + Q̃�T�H̃ = 0, Q̃�T� =
1

T5 −
�2

4T4 −
�

T3 . �48�

If Q̃�T� is positive for some T, then solutions will locally be
oscillatory; otherwise solutions will exhibit nonoscillatory

exponential growth/decay. In the inviscid case, Q̃�0 for all

T. With finite viscosity, Q̃�T� changes sign and becomes
negative for large T, meaning that oscillations are only pos-
sible at short times. This defines a new characteristic time;

let T2 be the positive root of Q̃�T2�=0,

T2��� =
��4 + 64� − �2

8�
. �49�

In terms of WKB analysis, T2 is a first-order turning point of
Eq. �48�. If T2�T1, then the upper bound on the range of
oscillatory behavior is set by T1, as shown in Fig. 6, and we
expect the solution to follow the analysis given by Eqs.
�45�–�47�. The condition T2�T1 gives a bound on the range
for the “low viscosity” behavior in terms of �,

0 
 � � 1.575. �50�

In the high viscosity regime, where T2�T1, the relative sizes
of T0 versus T2 become important in determining the dy-
namic behavior. The critical case where T0=T2 determines a
critical wavenumber,

k�
osc =� 4 Re We

Re2 − 4 We
, �51�

namely, the amplitude of perturbations with k��k�
osc will ex-

hibit temporal oscillations at least for short times while
longer waves will have monotonic decay. Taking k�

osc→�
determines a critical Ohnesorge number, Oh
�We /Re, as
Ohc=1 /2, such that if Oh�Ohc then all perturbation modes
have monotonic decay for all times.

In the case where T0�T2�T1, the perturbations will
exhibit rapid decaying oscillations until T2, see Fig. 8. For
large k�, the amplification factor should have the same gen-
eral form as Eq. �47� though the constant of proportionality
will reflect the further decay that occurs on the range T2

Increasing Re

kχ

α

1010.1

1

10−4

FIG. 7. Amplification factor for the low viscosity case with respect to 1D
perturbations in the axial direction at several values of the Reynolds number.
The analytical estimate �Eq. �47�� is shown as the dashed curve.

O(T −3/4 exp(ω/[2T ]))

O(T −1)

T

|H
(T

)|

10010T1T2T0

1

10−10

10−20

FIG. 8. Axial perturbations for the moderate viscosity case: Time evolution
of the perturbation amplitude with asymptotic behaviors.
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�T�T1. It is helpful to recall the parameter dependence of
these times: T0 depends only on the wavenumber and We
�Eq. �34��, while T1 is a pure constant �Eq. �40��, and T2

reflects the influence of viscosity �Eq. �49��.
When T2�T0 no oscillations will occur, as shown in Fig.

9. This is the case for short-wave perturbations in the high
viscosity limit. The behavior of perturbations for short times
with T�T0 is obtained by considering Eq. �35� for large �.

Rescaling the solution as H�T�= H̄�T̄� with T=�−1/2T̄ trans-
forms Eq. �35� to

�−3/2d2H̄

dT̄2
+ �4�−3/2

T̄
+

1

T̄2�dH̄

dT̄
+ �2�−3/2

T̄2
+

1

T̄5�H̄ = 0.

�52�

For �→�, at leading order we get H̄�T̄��ce1/�2T̄2�

+O��−3/2�, or subject to the initial condition H�T0�=1,

H�T� � exp� 1

2�
�T−2 − T0

−2�� + O��−1� , �53�

for T=O�1�. The next term in the expansion of the solution
of Eq. �52� for �→� includes a secular term of the form
�−1TH�T�. We conclude that the asymptotic expansion is
only well ordered up to T�T�=O���, as shown in Fig. 9. To
obtain a connection to the long-time behavior we set Eq. �53�
equal to H=�T0 /T at T=T�, yielding

��k�� � k�
2 exp� Re

128k�
2 We

�Re2 − 16k�
4�� , �54�

see Fig. 10. This result can be made more rigorous by re-
garding Eq. �52� as a singular perturbation problem with �
=�−3/2→0; then Eq. �54� is a consequence of leading order

matching of Eq. �53� to the singular solution for T̄→�. It is
somewhat unexpected that in this regime the maximum am-
plification factor increases with increasing viscosity; though
other aspects of the behavior are more conventional: decreas-
ing the influence of surface tension relative to viscous effects
increases the range of wavenumbers with ��k���1 on 0
�k��k�,3 with k�,3�O��We /Re� for Re→0, or in terms of

the capillary number, Ca=We /Re, k�,3�O��Ca� for Ca
→�.

To summarize our results from this section we plot the
maximum amplification factor at a given Reynolds number
�with We held fixed�, �max�Re�=maxk�

��k� ,Re�, see Fig.
11. The numerical results plotted are obtained from scanning
Figs. 7 and 10 over a range of Reynolds numbers. The
asymptotic behaviors, �max=O�Re1/6� for Re→� and �max

=O�Re−2� for Re→0, are obtained analytically from the
critical points, i.e., �k�

�=0, of Eqs. �47� and �54�, respec-
tively. In both of these limits, with the critical wavenumber
being k�→�, the amplification factor is unbounded. Conse-
quently, while at any finite Reynolds number, �max is
bounded and the flow should be viewed as being marginally
asymptotically stable. For Stokes flow and inviscid flow,
axial short-wave perturbations can exhibit unbounded tran-
sient growth so that the sheet is weakly unstable.

T∗ = O(ω)

O(exp(1/[2ωT 2]))

O(T −1)

T

|H
(T

)|

10510310T1T0T2
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FIG. 9. Axial perturbations for the high viscosity case: Time evolution of
the perturbation amplitude with asymptotic behaviors.
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FIG. 10. Amplification factor for the high viscosity case with respect to 1D
axial perturbations at several values of the Reynolds number �solid curves�.
The analytical estimate �Eq. �54�� is shown as the dashed curve. Note that
for fixed We, decreasing the Reynolds number corresponds to increasing the
capillary number.
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FIG. 11. Maximum amplification factor for 1D axial perturbations as a
function of Reynolds number �for fixed We� with asymptotes derived from
Eqs. �47� and �54�.
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VI. 1D PERTURBATIONS IN THE TRANSVERSE
DIRECTION

We now consider the growth of spatial perturbations
with structure solely in the direction transverse to the unper-
turbed flow. These perturbations will have k�=0 and hence
Eq. �24� reduces to

dH1

d�
= −

H1

�
−

iky

�
V1, �55a�

dU1

d�
= −

U1

�
−

ky
2

Re
U1, �55b�

dV1

d�
= −

1

Re
�− 2ikyH1 + 4ky

2V1� −
iky

3

We
H1. �55c�

Noting that Eq. �55b� decouples from the rest of Eq. �55�,
and using the initial condition U1�1�=U0, the solution of Eq.
�55b� is

U1��� =
U0

�
e−ky

2 Re−1��−1�. �56�

Consequently, 	U1���	� 	U0	 for all ��1 and we see that
infinitesimal perturbations to u remain bounded by the initial
disturbance amplitude for all times.

For the special case ky =0, we obtain the marginally
stable solution H1���=1 /�, U1���=U0 /�, V1���=V0. For ky

�0 the remaining coupled Eqs. �55a� and �55c� can be res-
caled using

H1��� = H�T�, V1��� = � 1

ky
�V�T�, � = �We

ky
4 �T �57�

to yield

dH

dT
= −

H

T
−

iV

T
, �58a�

dV

dT
= − iH + ��2iH − 4V� , �58b�

where the only remaining explicit parameter is

� =
We

ky
2 Re

. �59�

Note that � is closely related to the capillary number, Ca
=We /Re. The initial condition is normalized as in Sec. V to
be

H�T0� = 1 at T0 =
ky

4

We
, �60�

where H will be real-valued for all times if V is pure imagi-
nary. As in the case of axial perturbations, the remaining
first-order system �58a� and �58b� can be combined into a
second-order equation for H�T�,

d2H

dT2 + � 2

T
+ 4��dH

dT
+ �2� + 1

T
�H = 0. �61�

Like axial perturbations, distinctions between transient and
long-time behaviors will occur for this problem with the ex-
ception that for transverse perturbations, asymptotic stability
will have a clear dependence on the value of �.

A. Inviscid problem

The inviscid problem �Re=�� is given by setting �=0 in
Eq. �61�. The reduced equation can be solved exactly in
terms of Bessel functions of order 1, yielding

H�T� = �a1Y1�2�T� + a2J1�2�T��T−1/2. �62�

As in Sec. V, having a closed-form exact solution allows us
to completely analyze stability for this case.

The asymptotic form of Eq. �62� valid for T→0 is

H�T� � b1� 1

T
− ln T + �2� − 1�� + b2�1 −

1

2
T +

1

12
T2� ,

�63�

where ��0.577 215 is the Euler–Mascheroni constant. For
sufficiently small T0, applying the initial condition H�T0�
=1 to Eq. �63� yields b1�T0. This transient behavior for T
→0, shown in Fig. 12, applies only briefly before the pertur-
bations approach the form set by the long-time asymptotics.

For T→�, Eq. �62� is a decaying oscillatory solution. If
T0 is sufficiently large, then applying the initial condition
�60� to the asymptotic form of Eq. �62� valid for T→�
yields

H�T� �
�T/T0�−3/4

cos �0
cos�2��T − �T0� + �0� , �64�

where �0 is a phase constant, see Fig. 12. In contrast to the
dynamics of axial perturbations, here the oscillatory behavior
occurs for long times instead of short times.

Notice in Fig. 12 that H�T� transitions to O�T−3/4� behav-
ior after the first complete period of oscillation �i.e., near the
second zero�. In particular, an upper bound for the transition

O(T −3/4)

T

|H
(T

)|

10310210T1T0

1

10−2

10−4

FIG. 12. Transverse perturbations for the inviscid case: Evolution of pertur-
bation amplitude �Eq. �62�� showing transition from transient behavior �Eq.
�63�� to O�T−3/4� long-time behavior �Eq. �64��.
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time T1 is related to the maximum value of the first zero of
a1Y1�S1�+a2J1�S1� over all possible a1, a2, yielding S1

�3.8317. This sets a time scale that defines the end of tran-
sient behavior,

T1 
 �S1

2
�2

� 3.6704, �65�

with the transient behavior �Eq. �63�� applying while T0


T�T1.
While the scaling amplitude of the perturbation depends

on the relative size of T0 versus T1, for sufficiently long
times �T1�T0� the solution will evolve according to Eq. �64�
for all ky �0. Consequently, these perturbations will grow
relative to the base state as H /h0=O�T1/4� and we conclude
that inviscid sheets are asymptotically unstable to transverse
perturbations.

B. Viscous problem

For ��0, Eq. �61� has a closed-form solution for H�T�
in terms of the Kummer special functions60 but since the
properties of these confluent hypergeometric functions are
somewhat opaque, we will avoid using them. In the limit T
→0, the solution can be written as a Frobenius series, of
similar qualitative form to Eq. �63�. For T→�, we obtain the
asymptotic expansion of the solution of Eq. �61� via WKB
analysis as

H�T� � c1T−�2�+1�/4� exp�1 – 4�2

64�2T
� + c2T�1−6��/4�e−4�T.

�66�

For long times the first term will always eventually domi-
nate, but for short to moderate times the second term could
be of competing size if ��

1
2 . Figure 13 shows this behavior

for �=1 with 	H	=O�T−�2�+1�/�4��� for T→�. Equation �66�
allows us to directly define the long-time asymptotic growth
rate of perturbations relative to the base flow as
	H1��� /h0���	=O����, or equivalently,

� 
 lim
�→�

ln	H1���/h0���	
ln �

=
2� − 1

4�
=

1

2
−

ky
2 Re

4 We
, �67�

as shown in Fig. 14. The sheet is asymptotically stable if �
�0 and unstable if ��0. The condition for asymptotic sta-
bility, which is equivalent to ��

1
2 , can also be written as

ky � �2 Ca, �68�

i.e., the capillary number sets a critical wavenumber. How-
ever, reconciling this prediction for inviscid sheets, ���
→0�→−� from Eq. �66� versus ���=0�= 1

4 from Eq. �64�,
requires analysis of the transient behavior which we address
next.

For ��
1
2 , a second time scale T2 is set that determines

whether transient oscillatory behavior will occur. The change

of variables H�T�=T−1H̃�T�e−2�T reduces Eq. �61� to

d2H̃

dT2 + Q̃�T�H̃ = 0, Q̃�T� =
1 – 2�

T
− 4�2. �69�

Recall that if Q̃�T��0 for some T, then solutions will be
locally oscillatory; otherwise solutions will exhibit exponen-

tial growth or decay. In the inviscid case, Q̃�T��0 for all T.

For finite viscosity, Q̃�T� changes sign and becomes negative
for large T, so that oscillations are possible only up to a finite
time. This defines the characteristic time T2,

T2��� =
1 – 2�

4�2 , �70�

which is positive if 0���
1
2 . In this case, oscillations are

possible for T0
T�T2, though the behavior of the solution
depends on the relative size of T2 to T1 �given by Eq. �65��
with the critical value, �c�0.2016, defined by the condition
T2=T1.

For �c���
1
2 �i.e., T2�T1�, the solution may exhibit a

single sign change �as indicated by a cusp with 	H	→0 in the
log-scale plots of 	H�T�	� before converging to the long-time
behavior �Eq. �66��, as shown in Fig. 15. The lower bound on
T2, given by T0=T2, sets a critical wavenumber �similar to
Eq. �51��

O(T −(2σ+1)/(4σ))
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)|

10T1T0
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FIG. 13. Evolution of the amplitude of a transverse perturbation for �=1;
Eq. �66� gives the long-time asymptotics.
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FIG. 14. Asymptotic growth rate of transverse perturbations ���� showing
the change in stability at �= 1

2 .
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ky
osc =� 2 Re We

Re2 − 4 We
, �71�

such that perturbations with ky �ky
osc or Oh�

1
2 exhibit

monotonic decay, as in Sec. V B.
For 0����c �i.e., T2�T1�, the perturbation amplitude

will have many sign changes if T2 is large, as shown in Fig.
16. Returning to Eq. �61�, the limit �→0 is a regular pertur-
bation of the inviscid problem; therefore the solution should
be of the form H=H�0��T�+O��� where H�0� is the inviscid
solution �62�. Going to next order yields a secular term of the
form �TH�0��T�; hence the expansion is not uniformly valid
for long times and the nearly inviscid behavior can only hold
for T�T�=O��−1�. Relative to the base solution, this yields
transient growth, akin to the unstable behavior �Eq. �64�� in
Sec. VI A. For long times, the solution will have rapid decay
as given by Eq. �66� with �→−�. These two regimes are
connected through local analysis of the turning point prob-
lem for Eq. �69� at T2, see Ref. 58. If we neglect this con-
nection problem, we can still obtain a reasonable estimate by
patching the asymptotic behaviors �Eqs. �64� and �66�� to-
gether at T�, as shown in Fig. 16. This determines the coef-

ficient in Eq. �66� to be c1�O��−1/�4���→� as �→0,
namely, the transient growth puts a very large prefactor on
the long-time behavior. The consequence is that while for
T→�, perturbations for �→0 will be seen to eventually
decay, the influence of the initial growth will be to produce
perturbations that can be very large at finite times, akin to the
long-time unstable behavior for inviscid sheets at �=0.

In summary, while the asymptotic stability of viscous
sheets is given by Eq. �67�, we find that in the case of nearly
inviscid sheets ��→0�, unstable transient growth of trans-
verse perturbations can have a significant influence for finite
times; in particular, these perturbations grow relative to the
base state as H /h0�O�T1/4�. From Eq. �68�, we find that
viscous sheets will be asymptotically unstable to long-wave
transverse perturbations for finite capillary numbers.

VII. STABILITY OF A SHEET TO 2D PERTURBATIONS

Having separately considered pure axial perturbations
�ky =0� and pure transverse perturbations �k�=0�, we return
to the full system �24a�–�24c� to examine oblique perturba-
tions with k� ,ky �0. It is convenient to rescale the Fourier
coefficients in Eq. �24� using

H1��� = H�T�, U1��� = � 1

ky
�U�T� ,

V1��� = � 1

ky
�V�T�, � = � k�

ky
�T , �72�

yielding the governing ODEs

dH

dT
= −

H

T
−

iU

T2 −
iV

T
, �73a�

dU

dT
= −

U

T
− ��−

4iH

T
+

4U

T2 +
3V

T
+ U� − i�� 1

T3 +
1

T
�H ,

�73b�

dV

dT
= − ��− 2iH +

V

T2 +
3U

T
+ 4V� − i�� 1

T2 + 1�H ,

�73c�

with the two control parameters

� =
k�ky

Re
, � =

k�ky
3

We
, �74�

and the initial condition �30� becomes

H�T0� = 1 at T0 =
ky

k�

, �75�

where, as in the previous cases �and without significant loss
of generality�, we take H to be real-valued with the velocity
components being pure imaginary. For connection with the
parameters used in previous sections, �=4� /�1/3, see Eq.
�33�, and �=� /�, see Eq. �59�. While it can be expected that
Eqs. �73a�–�73c� encompass a richer set of dynamics than
either of the 1D cases, we will not consider this exhaustively.
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FIG. 15. Evolution of the transverse perturbation amplitude in the moderate
capillary number case, here with �= 1
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FIG. 16. Evolution of transverse perturbations for �→0. Dashed curves
show predictions for the moderate-time nearly inviscid behavior �Eq. �64��,
the connection problem at T2, and the long-time viscous decay �Eq. �66��.
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Rather, we will focus on the dominant behaviors and make
connections to the related 1D behaviors developed earlier.

A. Inviscid problem

The stability problem for an inviscid sheet is obtained by
setting �=0 in Eq. �73�. The three coupled ODEs can be
combined into a single third-order equation for H�T�,

d3H

dT3 +
6

T

d2H

dT2 + � 6

T2 + �
�1 + T2�2

T5 �dH

dT
+ 3�� 1

T2 −
1

T6�H

= 0. �76�

This equation has irregular singular points at both T=0 and
T=� and hence we can use WKB analysis to obtain
asymptotic behaviors in both limits.

For T→0, we obtain

H�T� � a1T−3/4 cos� 2
3
��T−3/2 + �0� + a2T3e−3T2

, �77�

where a1, a2, �0 depend on the initial conditions. The decay-
ing oscillatory term dominates the transient behavior. Note
that rescaling Eq. �77� into the original variables yields

H1��� � O��−3/4 cos� 2
3k�

2 We−1/2 �−3/2�� , �78�

as shown in Fig. 17; this is equivalent to Eq. �39� from Sec.
V A. Therefore, we conclude that the transient behavior of
general perturbations to inviscid sheets is dominated by the
growth of perturbations in the axial component k�. The de-
pendence of the solution for T→0 on ky is weak since it does
not enter at leading order.

Similarly, for T→�, we obtain

H�T� � b1T−3/4 cos�2��T + �1� + b2T−3e−6/��T�, �79�

with constants b1, b2, �1. Again, the decaying oscillatory be-
havior dominates and the unscaled long-time solution will
take the form

H1��� � O��−3/4 cos�2ky
2 We−1/2 �1/2�� , �80�

as shown in Fig. 17; this is equivalent to Eq. �64� from Sec.
VI A. Consequently, the long-time behavior of general per-

turbations to inviscid sheets is dominated by the growth of
perturbations in the transverse component ky. For T→�, the
dependence of the solution on k� is weak since it does not
enter at leading order.

From the transient and long-time behaviors, we see that
the unstable relative growth 	H1 /h0	=O��1/4� is maintained
for all times; what differs is the form of the oscillatory be-
havior and whether the influence of the axial �Eq. �78�� or
transverse �Eq. �80�� perturbations dominate. Given the form
of Eqs. �78� and �80�, we conclude that an inviscid sheet is
unstable to general symmetric perturbations of all positive
wavelengths.

B. Viscous problem

Finally, we consider general perturbations on a viscous
sheet. As in the previous section, the viscous version of Eqs.
�73a�–�73c� can be combined to form a linear third-order
ODE for H�T�. The expressions for the coefficients make the
equation somewhat long and cumbersome, so we will not
write it out; for �=0 it reduces to Eq. �76�. As in the previ-
ous section, we obtain the asymptotic behaviors for H�T�
from WKB analysis; we have also obtained the asymptotic
behaviors for H, U, V directly from Eqs. �73a�–�73c� using
the method of asymptotic partitioning given by Ref. 61.

For T→0, we find

H�T� � c1T−3/4e2�/T cos� 2
3
��T−3/2 − 4�2�−1/2T−1/2 + �0�

+ c2T3e�/T, �81�

with constants c1, c2, �0. Putting the dominant behavior in
original variables yields

H1��� � O��−3/4e2k�
2/�� Re� cos�k�

2 We−1/2� 2
3�−3/2

− 4 We Re−2 �−1/2���; �82�

this is equivalent to the transient viscous behavior for axial
perturbations �Eq. �45��. As in the 2D inviscid case, the tran-
sient behavior is independent of ky to leading order.

For T→�, we obtain

H�T� � d1T−��+2��/�4�� + d2T��−6��/�4��e−4�T + d3T−4e−�T,

�83�

with constants d1, d2, d3. For ��0, the second and third
modes exponentially decay; hence the first mode is the domi-
nant long-time behavior, which in original variables is given
by

H1��� � O��−�1/2�−ky
2 Re/�4 We��; �84�

this is the same as the long-time behavior of Eq. �66�. As in
the 2D inviscid case, the long-time behavior is independent
of k� to leading order. Figure 18 shows a numerically com-
puted solution of Eqs. �73a�–�73c� compared with the tran-
sient �Eq. �81�� and long-time �Eq. �83�� asymptotic behav-
iors. Note that some caution must be used, as the same
transitions in qualitative behaviors for different parameter
ranges that were observed in Secs. V B and VI B will occur
here.
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FIG. 17. Evolution of the amplitude for 2D perturbations of an inviscid
sheet. Dashed lines show predicted decay rates for transient �Eq. �78�� and
long-time �Eq. �80�� behaviors.
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Examining 	H1 /h0	 to determine whether the perturba-
tions grow or decay relative to the base solution, we find that
the condition for asymptotic stability is

ky � �2We/Re = �2 Ca, �85�

which is the same condition as Eq. �68�. Hence, the
asymptotic stability of the sheet is controlled by the trans-
verse component of the symmetric perturbations, in particu-
lar, for any finite Ca the sheet is unstable to long-wave trans-
verse perturbations.

VIII. CONCLUSIONS

Using the full Navier–Stokes equations we have derived
a time-dependent exact solution for the idealized extensional
motion of an incompressible planar sheet driven by inertia.
The solution, which includes a balance of inertial, gravita-
tional, and viscous effects, requires no a priori assumptions
on the thickness of the sheet, is valid for any value of the
acceleration due to gravity and any value for the viscosity,
and is independent of the value of the surface tension.

The exact solution also satisfies the long-wave model for
a long, thin liquid sheet. We examine the linear stability of
our time-dependent exact solution within the framework of
the long-wave model to 1D and 2D symmetric perturbations
imposed in the axial and transverse directions for viscous
and inviscid fluids. Both transient growth and long-time
asymptotic stability were considered. Owing to the time de-
pendence of the exact solution, the stability analysis involves
solving an initial value problem instead of a standard
normal-mode eigenvalue problem. Consequently, our predic-
tions for stability are determined based on the time-
dependent growth of perturbations relative to the base solu-
tion. In some of the cases considered, we find that transient
effects can influence the long-time stability of the sheet
which motivated our study of both transient and long-time
stability.

For 1D perturbations in the axial direction, inviscid and
viscous sheets are asymptotically marginally stable, though
we find that transient growth can have an important effect
and depends on the values of the Weber and Reynolds num-

bers. In particular, for these two cases our results use a
weaker definition of stability that distinguishes asymptotic
marginal stability from instability through a transient growth
parameter �or amplification factor� �. Though the geometry
of the problem makes it tempting to compare our results with
temporal stability studies for symmetric perturbations on in-
viscid sheets and curtains,26–28,35 this must be avoided. While
it is generally true that the Reynolds and Weber numbers are
the key parameters, the differences between our results and
these classical studies is significant. Our base flow is time-
dependent and extensional, while theirs is steady and unidi-
rectional. The results of the other studies are derived from
coupling the motion of the sheet to that of the surrounding
gas, whereas we have neglected the influence of the sur-
rounding gas taking it to have negligible density compared to
that of the sheet. Finally, since our results for axial perturba-
tions can involve large transient deviations from the delicate
case of marginal linear stability, it is highly likely that non-
linear effects will play an important role. Consequently, fur-
ther studies are needed to conclusively determine the ex-
pected behavior for purely axial perturbations to extensional
sheets.

Some precedent for the dynamics we describe is given in
an analogous study by Frankel and Weihs6 who considered
the stability of viscous stretching jets. Similar to our prob-
lem, their solution is time-dependent and their stability
analysis involves the study of transient and long-time behav-
iors. As in our results from Sec. V B, they observed the
“dual” role of viscosity in amplifying transient growth
�which they attribute to the axial viscous force� before yield-
ing to the more classical damping expected for long times.
Likewise, they obtained perturbations that had oscillatory
transient behavior before transitioning to long-time mono-
tonic decay, as in our Figs. 6, 8, 16, and 18.

Returning to our results, we find that inviscid sheets are
asymptotically unstable to 1D transverse perturbations of all
wavelengths. Hence, in terms of 1D perturbations, transverse
perturbations may be regarded as more dangerous to the sta-
bility of an inviscid sheet than axial ones. For general 2D
perturbations, inviscid sheets are unstable to perturbations of
all wavelengths with the transient dynamics controlled by
axial perturbations and the long-time dynamics controlled by
transverse perturbations. The asymptotic stability of viscous
sheets to 1D transverse perturbations and to general 2D per-
turbations is dependent on the capillary number. In both
cases, the sheet is asymptotically unstable to long-wave
transverse perturbations at any finite Ca, such that decreasing
the influence of surface tension relative to viscosity increases
the range of unstable wavenumbers. This observation, that
surface tension acts to stabilize the motion of a sheet, has
been illustrated in other types of sheet flows.26,27
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