LAB 4 DATA

Data is provided here for the transformer in Lab 4 that you may use for your report. The plots on pages 2-3 show traces that would be observed on the oscilloscope. Phases are stated with respect to $v_{T}(t)$, the voltage at the terminals of the waveform generator. The phasor voltages are peak values (not rms).

1. Source at primary with "helper" resistor $R_{h}=10 \Omega$, open-circuit secondary:

$$
\begin{aligned}
& \mathbf{V}_{T}=0.54 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{V}_{1}=0.40 \angle 36.6^{\circ} \mathrm{V} . \\
& \mathbf{V}_{2}=3.63 \angle 41.2^{\circ} \mathrm{V}
\end{aligned}
$$

2. Source at secondary with "helper" resistor $R_{h}=1 \mathrm{k} \Omega$, open-circuit primary:

$$
\begin{aligned}
& \mathbf{V}_{T}=19.61 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{V}_{1}=1.33 \angle 41.2^{\circ} \mathrm{V} . \\
& \mathbf{V}_{2}=14.80 \angle 36.6^{\circ} \mathrm{V}
\end{aligned}
$$

(When you calculate M, you can average the estimates obtained in parts 1 and 2. Ideally both would give the same result, but they are different due to measurement errors.)
3. Source at primary with "helper" resistor $R_{h}=10 \Omega$, load resistor $R_{L}=5 \mathrm{k} \Omega$ at secondary:

$$
\begin{aligned}
& \mathbf{V}_{T}=0.56 \angle 0^{\circ} \mathrm{V} \\
& \mathbf{V}_{1}=0.39 \angle 32.4^{\circ} \mathrm{V} . \\
& \mathbf{V}_{2}=3.34 \angle 34.3^{\circ} \mathrm{V}
\end{aligned}
$$

Calculate the currents \mathbf{I}_{1} and \mathbf{I}_{2} from the voltage phasors, and compare the phasor voltages and currents with the ideal transformer equations using $n=\sqrt{L_{2} / L_{1}}$.
How closely do the voltages and currents match the ideal transformer model?
Replace the transformer and load with a single "reflected impedance" \mathbf{Z}_{R} calculated using the linear and ideal transformer models (you will get a different \mathbf{Z}_{R} for each model).
Which \mathbf{Z}_{R} gives a closer approximation to the given \mathbf{V}_{1} and \mathbf{I}_{1} phasor values?
Also calculate the average power delivered to the load resistor (using \mathbf{V}_{2}).
When the same load is attached at nodes $a-b$ with the same helper resistor:

$$
\mathbf{V}_{L}=\mathbf{V}_{a-b}=1.98 \angle 0^{\circ} \mathrm{V}
$$

Use this to calculate the average power delivered to load if the transformer is removed.

See plots of voltage waveforms on pages 2 and 3 (available online, but not included on handout given in class).

