

Consider linear and ideal transformers attached to Circuit 1 and Circuit 2.
$\mathbf{V}_{1}=\left(R_{1}+j \omega L_{1}\right) \mathbf{I}_{1}-\quad(j \omega M) \mathbf{I}_{2}$
$\mathbf{V}_{2}=(j \omega M) \mathbf{I}_{1}-\left(R_{2}+j \omega L_{2}\right) \mathbf{I}_{2}$
$? \rightarrow ? \quad \frac{\mathbf{V}_{1}}{N_{1}}=\frac{\mathbf{V}_{2}}{N_{2}}$
$\mathbf{I}_{2}=\frac{j \omega M}{j \omega L_{2}+R_{2}+\mathbf{Z}_{L}} \mathbf{I}_{1}$

$$
N_{1} \mathbf{I}_{1}=N_{2} \mathbf{I}_{2}
$$

Substitute $M=k \sqrt{L_{1} L_{2}}$ with $0 \leq k \leq 1$ and pull out factors in the $\mathbf{V}_{1}$ and $\mathbf{V}_{2}$ equations:

$$
\begin{array}{ll}
\left.\mathbf{V}_{1}=j \omega L_{1}\left[\left(1+\frac{R_{1}}{j \omega L_{1}}\right)\right) \mathbf{I}_{1}-k \sqrt{\frac{L_{2}}{L_{1}}} \mathbf{I}_{2}\right] & \frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}=\sqrt{\frac{L_{1}}{L_{2}}} \frac{\left(1+\frac{R_{1}}{j \omega L_{1}}\right)}{k \mathbf{I}_{1}-\sqrt{\frac{L_{2}}{L_{1}}}\left(1+\frac{R_{2}}{j \omega L_{2}}\right)} \mathbf{I}_{2} \\
\mathbf{V}_{2}=j \omega L_{1} \sqrt{\frac{L_{2}}{L_{1}}}\left[k \mathbf{I}_{1}-\sqrt{\frac{L_{2}}{L_{1}}}\left(1+\frac{R_{2}}{j \omega L_{2}}\right) \mathbf{I}_{2}\right] & \rightarrow
\end{array}
$$

What must occur to achieve the ideal transformer relations?

1) $k=1, \quad\left(\omega L_{1}\right) \gg R_{1}, \quad\left(\omega L_{2}\right) \gg R_{2}$, and $\sqrt{\frac{L_{1}}{L_{2}}}=\frac{N_{1}}{N_{2}}$ for voltage ratios.
2) In addition, $\left(\omega L_{2}\right) \gg\left|\mathbf{Z}_{L}\right|$ is needed for current ratios.

Comparisons between linear transformer (more accurate) and ideal (when conditions are satisfied):
Open-circuit load: $\mathbf{Z}_{L}=\infty, \mathbf{I}_{2}=0$

$$
\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}=\sqrt{\frac{L_{1}}{L_{2}}} \frac{\left(1+\frac{R_{1}}{j \omega L_{1}}\right)}{k} \text { so }\left|\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}\right|=\sqrt{\frac{L_{2}}{L_{1}}} \frac{k}{\left|1+\frac{R_{1}}{j \omega L_{1}}\right|}<\frac{N_{2}}{N_{1}}
$$

Any finite load: $\left|\mathbf{Z}_{L}\right|<\infty$
$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}}=\sqrt{\frac{L_{2}}{L_{1}}} \frac{1+\frac{R_{2}+\mathbf{Z}_{L}}{j \omega L_{2}}}{k}$ so $\left|\frac{\mathbf{I}_{\mathbf{1}}}{\mathbf{I}_{2}}\right|=\sqrt{\frac{L_{2}}{L_{1}}} \frac{\left|1+\frac{R_{2}+\mathbf{Z}_{L}}{j \omega L_{2}}\right|}{k}>\frac{N_{2}}{N_{1}}$

