ELEC 226
Prof. Rich Kozick

Natural and Step Responses for RLC Circuits

The natural and step responses of RLC circuits are described by second-order, linear differential equations with constant coefficients and constant "input" (or forcing function),

$$
\begin{equation*}
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x(t)=D \tag{1}
\end{equation*}
$$

where a, b, c, and D are constants, and the initial values $x\left(0^{+}\right)$and $\frac{d x\left(0^{+}\right)}{d t}$ are known (these are found by circuit analysis). We assume $a>0$, without loss of generality.

As you know from MATH 212, the general solution for $t>0$ is

$$
\begin{equation*}
x(t)=x_{c}(t)+x_{p}(t) \tag{2}
\end{equation*}
$$

where $x_{c}(t)$ is the complementary solution to the homogeneous equation and $x_{p}(t)$ is a particular solution. The particular solution is

$$
x_{p}(t)=\left\{\begin{align*}
\frac{D}{c}, & c \neq 0 \tag{3}\\
\frac{D}{b} t, & c=0, b \neq 0 \\
\frac{D}{2 a} t^{2}, & c=b=0
\end{align*}\right.
$$

The homogeneous differential equation is

$$
\begin{equation*}
a \frac{d^{2} x_{c}}{d t^{2}}+b \frac{d x_{c}}{d t}+c x_{c}(t)=0 \tag{4}
\end{equation*}
$$

Its solution is determined by the characteristic (or auxiliary) equation,

$$
\begin{equation*}
a s^{2}+b s+c=0 \tag{5}
\end{equation*}
$$

which has roots

$$
\begin{align*}
& s_{1}=-\frac{b}{2 a}+\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} \tag{6}\\
& s_{2}=-\frac{b}{2 a}-\sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} \tag{7}
\end{align*}
$$

The neper frequency is $\alpha=b /(2 a)$ and the resonant frequency is $\omega_{0}=\sqrt{c / a}$ (in radians/sec). If $c<0$, then ω_{0} is imaginary and $s_{1}>0$ in (6).

There are three cases.

1. Real and unequal roots (overdamped): $\alpha^{2}>\omega_{0}^{2}$

$$
\begin{equation*}
x_{c}(t)=c_{1} e^{s_{1} t}+c_{2} e^{s_{2} t} \tag{8}
\end{equation*}
$$

Both terms are decaying exponentials if $c>0$.
2. Real and equal roots (critically damped): $\alpha^{2}=\omega_{0}^{2}$

$$
\begin{equation*}
x_{c}(t)=c_{1} e^{s_{1} t}+c_{2} t e^{s_{1} t}, \text { where } s_{1}=-\alpha=-\frac{b}{2 a} \tag{9}
\end{equation*}
$$

3. Complex roots (underdamped): $\alpha^{2}<\omega_{0}^{2}$

The roots have the form

$$
\begin{equation*}
s_{1,2}=-\alpha \pm j \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha \pm j \omega_{d} \tag{10}
\end{equation*}
$$

where ω_{d} is the damped frequency (in radians/sec). Then

$$
\begin{equation*}
x_{c}(t)=c_{1} e^{-\alpha t} \cos \left(\omega_{d} t\right)+c_{2} e^{-\alpha t} \sin \left(\omega_{d} t\right) \tag{11}
\end{equation*}
$$

In the case that $\alpha=0$, then $\omega_{d}=\omega_{0}$ and the solution is pure, undamped oscillation,

$$
\begin{equation*}
x_{c}(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \tag{12}
\end{equation*}
$$

This is why ω_{0} is called the resonant frequency.

Summary:

- The general solution is in equation (2): $x(t)=x_{c}(t)+x_{p}(t)$.
- The complementary solution $x_{c}(t)$ is either (8), (9), or (11).
- The particular solution $x_{p}(t)$ is in (3). For the natural response, $D=0$ and $x_{p}(t)=0$.
- The constants c_{1} and c_{2} are determined from the initial conditions $x\left(0^{+}\right)$and $\frac{d x\left(0^{+}\right)}{d t}$.
- Hints for finding initial conditions in RLC circuits:
- Parallel RLC: Analyze voltages, so $x(t)=v(t)$. Then $v\left(0^{+}\right)$is determined from the initial capacitor voltage, and $\frac{d v\left(0^{+}\right)}{d t}$ is determined from KCL and the initial inductor current.
- Series RLC: Analyze currents, so $x(t)=i(t)$. Then $i\left(0^{+}\right)$is determined from the initial inductor current, and $\frac{d i\left(0^{+}\right)}{d t}$ is determined from KVL and the initial capacitor voltage.

