Laboratory 3: More Transformers

Objective: We will experiment again with the transformers from <u>Lab 2</u> and use the formulas for <u>linear</u> and <u>ideal</u> transformers, including the notes on <u>limits of the linear</u> transformer equations when the ideal transformer assumptions are applied.

Lab Activities:

- 1. Use the outer terminals on the secondary so that the turns ratio is expected to be $a=N_2 / N_1 = 0.1$.
- 2. Use a frequency of 100 Hz and characterize your transformer at this frequency. That is, estimate the internal resistances of the primary and secondary coils (R_1 and R_2), the self-inductances (L_1 and L_2), and the coefficient of coupling, k. You should be able to estimate R_1 , R_2 , L_1 , and L_2 quickly using the procedure from Lab $\underline{2}$.
- 3. Compare the ratio L_1 / L_2 with the expected value of $[N_1 / N_2]^2 = 100$.
- 4. Determine how closely your transformer approximates the ideal transformer equations:

$$\frac{\mathbf{V}_1}{N_1} = \frac{\mathbf{V}_2}{N_2}$$
$$N_1 \mathbf{I}_1 = N_2 \mathbf{I}_2$$
$$Z_{ab} = \frac{Z_L}{\left(N_2/N_1\right)^2}$$

How does the closeness of approximation vary with frequency?

5. If you finish the previous steps, set up the circuit shown in Problem 9.82 that you analyzed on <u>Homework 3</u>, and compare your measured results with the analysis. Use a potentiometer for R_x .

Each lab group should prepare a one-page summary of your results and discuss it with the instructor before leaving.

Please keep your circuits assembled until you discuss the results with the instructor.