Second-Order Systems

Characteristic eq.: \(a s^2 + bs + c = 0 \), \(a > 0 \). Roots \(s_1 \) and \(s_2 \).

Overdamped: \(c > 0 \) and \(c < 0 \) are different.

Underdamped:

Char. Eq.

\(\sqrt{a^2 - \omega_0^2} \)

\(S > 0 \)

\(\omega_0^2 - \alpha^2 \)

S-plane

Time response

\(\chi_c(t) \)

\(\chi_c(t) \)

Critically damped:

\(-\alpha = s_1 = s_2 \)

\(\omega_0^2 - \alpha^2 \)

Two roots at \(s = 0 - \alpha \)
Underdamped: 3 cases: $\alpha < 0$, $\gamma = 0$, $\alpha > 0$.

\[\omega_0^2 - \alpha^2 = \omega_d^2 \]

No real roots!!

\[\omega_0^2 = \omega_d^2 \]

\[\omega_d^2 = \omega_0^2 - \alpha^2 \]