Homework Assignment \#11 - due in class on Wednesday, Nov. 14, 2012

Note on phase shift:

Remember that the standard way of expressing phase is to use values with magnitudes less than 180°. That is, phase shift is normally expressed in the range -180 to +180 . For example, a waveform that lags (follows) another by -210° would usually be said to lead the other by $+150^{\circ}$ $\left(-210^{\circ}=+150^{\circ}\right)$.

Textbook Problems: 7.19 and 7.20.
Simultaneous, linear equations with complex numbers: Use your calculator to solve for x and y and express the solution in polar form:

$$
\begin{aligned}
& (j 2) x+(1-j) y=5 \angle-30^{\circ} \\
& (1+j) x-(3+j) y=1
\end{aligned}
$$

Additional Problems:

1. Find a mathematical expression for the following sinusoidal current in cosine form. Assume that the sinusoidal waveform extends beyond the curve shown in the positive and negative t directions. Pay attention to the units on both axes.

2. What is the period of the sinusoidal waveform in Prob. 1?
3. If the current in Prob. 1 is flowing through a $10-\mu \mathrm{H}$ inductor, what is the maximum voltage drop (any polarity) across the inductor at any time?
4. Redraw the current waveform in Prob. 1 for the case when it has experienced a phase shift of $+40^{\circ}$.
5. Calculate the phase shift (in degrees) between waveforms i_{1} and i_{2} in the figure below. Be sure to indicate which waveform leads or lags (follows) the other.

