Thévenin’s Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a voltage source and a series resistor

\[v_{Th} = v_{oc} \]

voltage across output with no load (open circuit)

\[R_{Th} = R_{in} \]

Resistance at terminals with all independent circuit sources set to zero
Norton’s Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a current source and parallel resistor.

\[i_N = \frac{v_{Th}}{R_{Th}} \]

Current through output with short circuit.

\[R_N = R_{Th} \]

Resistance at terminals with all circuit sources set to zero.
How Do We Find Thévenin/Norton Equivalent Circuits?

- **Method 1: Open circuit/Short circuit**
 1. Analyze circuit to find v_{oc}
 2. Analyze circuit to find i_{sc}

 $$v_{Th} = v_{oc}$$

 $$R_{Th} = \frac{v_{Th}}{i_{sc}}$$

Note: This method is applicable to “any circuit”, whether or not it contains dependent sources.

The circuit must include at least one (nonzero) independent source, otherwise $v_{Th} = i_{sc} = 0$!
How Do We Find Thévenin/Norton Equivalent Circuits?

Method 2: Equivalent Resistance

1. Analyze circuit to find either

 \[v_{oc} \text{ or } i_{sc} \]

2. Deactivate all independent sources by replacing voltage sources with short circuits and current sources with open circuits.
3. Simplify circuit to find equivalent resistance

Note: This method does not apply to circuits that contain dependent sources.

Why does this method work for finding \(R_{Th} \)?
Method 3:

External-Source Method

Circuit with only independent sources deactivated

![Circuit diagram](image)

Figure 3-22: If a circuit contains both dependent and independent sources, R_{Th} can be determined by (a) deactivating independent sources (only), (b) adding an external source v_{ex}, and then (c) solving the circuit to determine i_{ex}. The solution is $R_{Th} = v_{ex} / i_{ex}$.

This method **must** be used if the circuit contains no independent sources. Still need to find $v_{Th} = v_{oc}$.

How Do We Find Thévenin/Norton Equivalent Circuits?