Thévenin's Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a voltage source and a series resistor

 $v_{\rm Th} = v_{\rm oc}$

voltage across output with no load (open circuit)

$$R_{\rm Th} = R_{\rm in}$$

Resistance at terminals with all (b) independent circuit sources set to zero

Norton's Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a current source and parallel resistor

$$i_{\mathrm{N}} = rac{v_{\mathrm{Th}}}{R_{\mathrm{Th}}}$$

Current through output with short circuit

$$R_{\rm N}=R_{\rm Th}.$$

Resistance at terminals with all circuit sources set to zero

Thévenin and Norton Equivalency

How Do We Find Thévenin/Norton Equivalent Circuits ?

Method 1: Open circuit/Short circuit

1. Analyze circuit to find v_{0c}

2. Analyze circuit to find i_{sc}

$$v_{\mathrm{Th}} = v_{\mathrm{oc}}$$

$$R_{\rm Th} = \frac{v_{\rm Th}}{i_{\rm sc}}$$

Note: This method is applicable to "any circuit", whether or not it contains dependent sources.

The circuit must include at least one (nonzero) independent source, otherwise $v_{Th} = i_{sc} = 0$!

How Do We Find Thévenin/Norton Equivalent Circuits?

Method 2: Equivalent Resistance

1. Analyze circuit to find either

 $v_{\rm oc}$ or $i_{\rm sc}$

2. Deactivate all independent sources by replacing voltage sources with short circuits and current sources with open circuits.

3. Simplify circuit to find equivalent resistance

Note: This method does not apply to circuits that contain dependent sources.

Why does this method work for finding R_{Th} ?

Equivalent-Resistance Method

How Do We Find Thévenin/Norton Equivalent Circuits?

Method 3:

Figure 3-22: If a circuit contains both dependent and independent sources, R_{Th} can be determined by (a) deactivating independent sources (only), (b) adding an external source v_{ex} , and then (c) solving the circuit to determine i_{ex} . The solution is $R_{\text{Th}} = v_{\text{ex}}/i_{\text{ex}}$.

This method <u>must</u> be used if the circuit contains no independent sources. Still need to find $v_{Th} = v_{oc}$.