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ABSTRACT

Context. The Serpens North cluster is a nearby low mass star forming region which is part of the Gould belt. It contains a range of
young stars thought to correspond to two different bursts of star formation and provides the opportunity to study different stages of
cluster formation.
Aims. This work aims to study the molecular gas in the Serpens North cluster to probe the origin of the most recent burst of star
formation in Serpens.
Methods. Transitions of the C17O and C18O observed with the IRAM 30 m telescope and JCMT are used to study the mass and
velocity structure of the region while the physical properties of the gas are derived using LTE and non-LTE analyses of the three
lowest transitions of C18O.
Results. The molecular emission traces the two centres of star formation which are seen in submillimetre dust continuum emission.
In the ∼40 M� NW sub-cluster the gas and dust emission trace the same structures although there is evidence of some depletion
of the gas phase C18O. The gas has a very uniform temperature (∼10 K) and velocity (∼8.5 km s−1) throughout the region. This is
in marked contrast to the SE sub-cluster. In this region the dust and the gas trace different features, with the temperature peaking
between the submillimetre continuum sources, reaching up to ∼14 K. The gas in this region has double peaked line profiles which
reveal the presence of a second cloud in the line of sight. The submillimetre dust continuum sources predominantly appear located in
the interface region between the two clouds.
Conclusions. Even though they are at a similar stage of evolution, the two Serpens sub-clusters have very different characteristics.
We propose that these differences are linked to the initial trigger of the collapse in the regions and suggest that a cloud-cloud collision
could explain the observed properties.
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1. Introduction

Despite the importance of understanding the processes driving
the formation of stars in the Galaxy, little is known about the role
played by molecular cloud kinematics on triggering or suppress-
ing star formation. Since most stars form in clusters (Lada &
Lada 2003), the kinematics of young stellar clusters in which the
initial conditions of clustered star formation are still imprinted
in the gas and dust emission properties can provide important
insights into the dominant mode of star formation (e.g. Peretto
et al. 2006).

One such young and nearby cluster is in the Serpens molec-
ular cloud (MC). Located at ∼260 pc (Straižys et al. 1996), the

� Appendices are only available in electronic form at
http://www.aanda.org
�� The IRAM 30 m telescope raw data used in this work are
only available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/519/A27
��� Funded by the Fundação para a Ciência e a Tecnologia (Portugal).

optical extinction map of the cloud covers more than 10 deg2

(Cambrésy 1999). However, the majority of the star formation
is occurring in three clusters covering approximately 1.5 deg2

(Enoch et al. 2007). The most active region is the Serpens
main cluster (hereafter Serpens) which has a surface density of
YSOs of 222 pc−2, compared to 10.1 pc−2 in the rest of the
Serpens cloud (Harvey et al. 2007a). In this main cluster, the
average gas density is around 104 cm−3 (Enoch et al. 2007)
with H2 column densities greater than 1022 cm−2 in the cores.
The high density of protostars in this main cluster seems to in-
dicate an early stage of evolution where the cluster gas may
still be infalling into the cores (Williams & Myers 1999, 2000;
Hurt et al. 1996). The star formation rate in this main cluster is
56 M� Myr−1 pc−2, ∼20 times higher than in the rest of the cloud
(Harvey et al. 2007a).

Amongst the youngest YSOs found in Serpens there are ten
Class 0 and I protostars which are detected in 850 μm dust con-
tinuum emission (e.g. Hurt & Barsony 1996; Davis et al. 1999),
hereafter referred to as submillimetre sources (shown in Fig. 1,
Table 1 and discussed in Sect. 2.2). These are distributed within
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Table 1. Submillimetre sources in Serpens Main Cluster.

Source name RA (J2000) Dec (J2000) Offset RA (′′) Offset Dec (′′)
SMM 1 18:29:49.87 1:15:16.0 0.3 2.6
SMM 2 18:30:00.25 1:12:51.7 0.8 5.7
SMM 3 18:29:59.26 1:13:56.3 0.3 2.0
SMM 4 18:29:56.77 1:13:08.0 2.7 2.1
SMM 5 18:29:51.35 1:16:34.9 3.3 0.9
SMM 6 18:29:57.99 1:13:59.2 4.7 3.0
SMM 8 18:30:01.88 1:15:08.4 0.5 0.9
SMM 9 18:29:48.34 1:16:42.0 3.3 0.5
SMM 10 18:29:52.04 1:15:44.4 1.5 3.4
SMM 11 18:30:00.41 1:11:41.6 1.4 0.8

Fig. 1. Map of the SCUBA 850 μm continuum emission in contours
showing the position of the submillimetre sources (labeled). Contours
at 0.4, 0.6, 1, 1.4, 1.8, 2.4 and 5 Jy beam−1. In grey scale are the Spitzer
MIPS 24 μm sources (Harvey et al. 2007b). All the sources seen on
this figure are classified as being young protostars, mostly Class O and
Class I sources, with a small number of flat spectrum sources.

∼0.2 pc2 and divided between two sub-clusters, one to the north-
west (NW) and one to the southeast (SE). These submillimetre
sources power a number of outflows, which have been studied
using several different approaches (e.g. Eiroa et al. 1992; Davis
et al. 1999; Hodapp 1999; Davis et al. 2000; Graves et al. 2010).
Figure 1 also shows the Spitzer MIPS 24 μm emission tracing
the young protostars classified as Class I or 0. The oldest objects
in the area shown on the image are a few flat spectrum sources
(Harvey et al. 2007a; Kaas et al. 2004). The presence of Class II
and Class III objects (not shown in Fig. 1) dispersed over a larger
area suggests that the region has undergone two episodes of star
formation. The first, responsible for these dispersed pre-main se-
quence stars (the Class II and III sources), occurred about 2 Myr
before the most recent burst which formed the submillimetre and
24 μm protostars (Class 0, I and flat spectrum sources), 105 yr
ago (Harvey et al. 2007a; Kaas et al. 2004).

This paper focuses on the dynamical and physical properties
of the gas in Serpens using CO isotopologues observed with the

IRAM 30 m telescope and with JCMT, to probe the current prop-
erties of the region as well as investigate any link back to the ini-
tial conditions under which the most recent burst of star forma-
tion in Serpens took place. Section 2 presents the observations,
as well as the data reduction and analysis methods and tech-
niques used in this study. In Sect. 3 the structure of the gas is dis-
cussed while Sect. 4 discusses its dynamics. In Sect. 5 its phys-
ical properties are analysed. These results are drawn together
and a scenario for the origin of the star formation in Serpens
described in Sect. 6.

2. Data and analysis techniques

2.1. IRAM Observations

The Serpens region was observed in the J = 1 → 0 and
J = 2 → 1 transitions of C18O and the J = 1 → 0 transition
of C17O with the IRAM 30 m telescope, using the facility re-
ceivers, in May 2001. The observations consisted of on-the-fly
maps of the region, centered at RA = 18h29m57.91s and Dec =
1◦12′25.2′′ over an area of approximately 10.5 arcmin2, ∼3′ in
Right Ascension and 3.5′ in Declination.

The C17O J = 1→ 0 data, observed at 112.359 GHz, have a
spatial resolution of 22′′, a velocity resolution of ∼0.052 km s−1

and a noise level of ∼0.45 K (in T ∗A) in the raw map – low enough
to allow the detection and identification of the hyperfine compo-
nents of the J = 1 → 0 transition of C17O. C18O was observed
with spectral resolution of ∼0.053 km s−1 at 109.782 GHz and
219.816 GHz and with spatial resolution of 22′′ and 11′′ for the
J = 1 → 0 and J = 2 → 1 transition, respectively. Both emis-
sion lines are detected with a good signal to noise, both with a
one sigma noise level of ∼0.45 K in T ∗A.

The beam and forward efficiencies of the IRAM 30 m tele-
scope (Beff and Feff respectively) are given on the telescope
website. From these we estimate for both C17O and C18O, a
Feff = 0.95 and Beff = 0.72, for the J = 1 → 0 transition,
and a Feff = 0.91 and Beff = 0.54, for the J = 2→ 1 transition.

The main data reduction was performed using GILDAS soft-
ware (CLASS90 and GREG). This included the baseline correc-
tions, hyperfine/Gaussian fitting of the data, and construction of
the datacubes. Given the good quality of the data, the baselines
were well fitted by a simple first degree polynomial function.

2.1.1. C17O

The C17O J = 1 → 0 line comprises three, partially blended,
hyperfine features. By fitting the hyperfine structure (HFS) of
the spectrum, the line width, velocity and optical depth (τ) can be
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Fig. 2. Contour maps of C17O J = 1 → 0 modelled emission from the hyperfine fit, overplotted on SCUBA 850 μm emission in gray scale. The
submillimetre sources are identified in the left figure with labels and triangles. These symbols will be used from this point forward. Each figure
represents a mean intensity map over 1 km s−1 intervals, from 6 to 10 km s−1. Contours range from 0.4 K km s−1 increasing by steps of 0.1 K km s−1

(in T ∗A scale). The figure shows the SE sub-cluster with three main peaks: one above SMM11, one between SMM2 and SMM6, and finally, one
west of SMM4. While the NW sub-cluster also contains three major peaks: one on SMM1, one close to SMM9, and another one south-west of
SMM1.

extracted. The line shape in the presence of hyperfine structure
can be described by

T (v) = TS(1 − e−τ(v)), (1)

where

τ(v) = τ0

3∑
i=1

ri exp

(
− (v − v0,i)2

2σ2

)
, (2)

T (v) is the line brightness temperature, TS is the source temper-
ature and τ is the optical depth. The optical depth is the sum
over the three hyperfine components of the transition with ri and
vo,i – the relative weight and the central velocity for each hy-
perfine component – being v the velocity, σ the velocity disper-
sion and τ0 the total optical depth common to the three compo-
nents (Fuller & Myers 1993). The spacing and weight of the
hyperfine components were adopted from Ladd et al. (1998).
Further details about the hyperfine structure fitting procedure in
the GILDAS software can be found on the IRAM website1.

To fit this hyperfine structure, the individual spectrum at each
pixel in the image was extracted from the datacube and was
fitted using the procedure described above. A model Gaussian
spectrum for each pixel was then reconstructed using the de-
rived values (the peak intensity, line width and central velocity).
Only pixels where both the line width and line peak intensity
were determined with a signal to noise ratio of 5 or greater were
considered.

The initial fitting showed that within the uncertainties, all the
emission was consistent with being optically thin. Therefore, to
reduce the uncertainties on the fitted quantities, the HFS fitting
was redone fixing the τ at 0.1 for the whole map, consistent with
optically thin emission. In the final C17O J = 1 → 0 modelled
datacube (Fig. 2) we were able to identify clear peaks at different
velocities and positions in the region. A detailed study of these
peaks is presented in Sect. 3.1.

2.1.2. C18O

The Serpens C18O emission is not affected by the outflows in
the region (Sect. 4.1) and the C18O lines have no hyperfine

1 http://www.iram.fr/IRAMFR/GILDAS/doc/html/
class-html/node8.html

Fig. 3. Observed C18O J = 1 → 0 spectra (black solid line), smoothed
in velocity to 0.1 km s−1 width channels, at two different positions: on
SMM1 (top) and on SMM11 (bottom); with the respective Gaussian
fit (red line). These are examples of a single peaked spectrum as seen
in the NW sub-cluster and a double peaked profile, as seen in the SE
sub-cluster.

structure. Therefore, on some regions of the mapped cloud such
as the NW sub-cluster (Fig. 1), lines are well represented by
a single Gaussian (Fig. 3 left panel). However, in the SE sub-
cluster, the line profile has two clear peaks (Fig. 3 lower panel).
The low optical depth of the C18O emission (Sects. 2.1.1 and 5)
together with double peaked lines in this region in other opti-
cally thin tracers such as N2H+ J = 1 → 0 (Olmi & Testi 2002)
suggests that these two peaks trace two clouds along the line of
sight towards this sub-cluster. In the weaker C17O emission with
its blended hyperfine structure, these two velocity components
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are too difficult to separate. However, since it is optically thin,
the C17O emission is still a reliable tracer of the total column
density.

2.2. JCMT data

Our excitation analysis (Sect. 4) makes use of JCMT HARP data
from the Gould Belt Survey (GBS) at JCMT (Graves et al. 2010;
Ward-Thompson et al. 2007). The data used is C18O J = 3 →
2, at 329.330 GHz, with 0.055 km s−1 spectral resolution, and
14′′ spatial resolution. The telescope main beam efficiency at
this frequency is ηmb = 0.66 (Curtis et al. 2010), and the rms
level achieved is of the order of 0.2 K (TA). A full description of
these data is given in the GBS Serpens First Look paper (Graves
et al. 2010, hereafter referred to as SFLPaper).

The submillimetre continuum data at 850 μm was observed
with SCUBA at the JCMT, with a beam size of 14′′. The initial
reduction, analysis and discussion of these data was presented by
Davis et al. (1999), where they estimate the overall dust proper-
ties and characteristics of the cloud (see Sect. 1). We have used
the pipeline reduced SCUBA data from the Canadian Astronomy
Data Centre (CADC) archives2 to investigate the structure of the
dust continuum emission and for comparison with the IRAM
30 m C17O and C18O data.

An initial inspection of the SCUBA data indicated good
agreement in the source positions for those sources where Davis
et al. determined positions from this same SCUBA data (SMM8
and SMM11) and as well as for SMM3. However, in agree-
ment with interferometric continuum observations (Hogerheijde
et al. 1999), the positions of some of the remaining SMM
sources needed to be revised compared to those listed in Davis
et al. (1999) with absolute offsets from the published positions
greater than 5′′ for SMM2 and SMM6. Table 1 presents rede-
termined positions for all sources, extracted from the 850 μm
map of Serpens, which now agree within 1′′ of the positions
in the SCUBA cores catalogue published by Di Francesco et al.
(2008). We estimate that these positions are accurate within the
2′′ SCUBA pointing errors (Davis et al. 1999). The offsets in
RA and Dec between the revised positions and those previously
published (listed in Davis et al. 1999) are also shown on Table 1.

3. Gas structure of the cloud

To determine the structure of the molecular gas we have car-
ried out a clumping analysis in 2D and 3D. Using the velocity
information from the gas emission it is possible to identify the
individual clumps within the cloud. These are compared to the
structure visible in the dust continuum. We use this analysis to
quantify the sizes and masses of molecular gas associated with
protostars, and carry out a virial analysis to determine the clump
stability.

3.1. C17O 2D-clumps

Initially we manually extracted the small scale molecular struc-
tures for comparison with the dust seen in the SCUBA map. This
was done based on a visual inspection of both channel and inte-
grated intensity maps (e.g. Fig. 2). The C17O J = 1→ 0 channel
maps show a significant number of emission features which are
not directly associated with the SCUBA cores. For this reason
we call these molecular structures “clumps” although this term
is often used to describe parsec-scale structures (Blitz 1993).

2 http://www.cadc.hia.nrc.gc.ca/jcmt/

The properties of each identified clump (Fig. 4) was subse-
quently extracted using the IDL 2D version of the source ex-
traction clumpfind algorithm code by Williams et al. (1994)
on maps integrated over the velocity range in which each clump
appeared.

With the size and the integrated intensity corrected for tele-
scope efficiency, we estimated the column density and mass
of each clump (Mcf) assuming a temperature of 10 K, a mean
molecular weight of 2.33 and a C17O fractional abundance with
respect to H2 of 4.7 × 10−8 (Frerking et al. 1982; Jørgensen et al.
2002). We also calculated the clumps virial masses using Eq. (3),
where Mvir is the virial mass, σobs is the observed velocity dis-
persion, G is the gravitational constant and α is a coefficient
function of the adopted density profile: α is 3/5 for a uniform
density, 2/3 for a profile as ρ ∝ r−1, 3/4 when ρ ∝ r−1.5, and 1
when ρ ∝ r−2 (Spitzer 1978),

Mvir =
3Rσ2

obs

αG
· (3)

The listed virial masses of the clumps adopt a density profile
of ρ ∝ r−2. The velocity FWHM of each clump was estimated
by averaging all the spectra assigned to that clump and has an
estimated uncertainty of ∼0.1 km s−1. The clumps identified by
this method will be referred to as the 2D-clumps hereafter.

The virial mass (Mvirial) and the gas mass (Mcf) were also
calculated for the two sub-clusters, NW and SE. The method
was the same as for the clumps except the density profile for the
sub-cluster gas was assumed to be ρ ∝ r−1.5, which is expected
to be more appropriate for these larger size regions. If the same
ρ ∝ r−2 as for the clumps had been adopted, the derived sub-
cluster mass would be a factor of 25% smaller.

The clumps are shown in Fig. 4, and the physical parameters
summarized on Table 2, where: RApeak and Decpeak are the po-
sition where the emission peaks within each clump; Vpeak is the
velocity at the peak position, with an uncertainty of 0.05 km s−1;
area is the surface in the map occupied by each clump; Mcf is the
mass of the clump calculated from clumpfind outputs; Mvirial
is the virial mass; Ratio Mvirial/Mcf is a measurement of how
bound each clump is – a gravitationally bound structure should
have a ratio around unity, but given the uncertainties of these
calculations, we consider a structure to be unbound if the ratio
is above 2; Ilow represents the lower contouring level assumed
when running the algorithm for each different clump (increasing
with steps of 0.10 K km s−1); and, finally, Ipeak shows the inte-
grated intensity in T ∗A as measured at the peak position.

Observational sources of uncertainty include the distance to
Serpens and the line width. Uncertainties on the line width in
particular might be a special issue in the SE region where the
two velocity components observed in C18O may become impor-
tant in broadening the C17O line. Systematic uncertainties in Mcf
include uncertainty in the adopted gas temperature and fractional
abundance of C17O. Finally, the systematic uncertainties on the
Mvirial include source geometry effects and the neglection of ad-
ditional terms in the virial equation (due to external pressure,
magnetic pressure, etc.). Amongst all the possible sources of
uncertainty, the greatest is likely to be the factional abundance
of C17O, given that our non-LTE study of C18O at 8 positions
(Sect. 5) show a mean depletion factor of 2.5 (Appendix B).
Given the observational and possible systematic uncertainties on
the calculations, the virial ratio is perhaps best seen as a useful
tool to compare the different structures within a cloud rather than
absolute measure of the gravitational equilibrium of any given
clump.
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Table 2. Properties of the 2D-clumps.

2D-Clump RApeak Decpeak Vpeak Area FWHM Mcf Mvirial Ratio Ilow Ipeak

ID (J2000) (J2000) (km s−1) (arcmin2) (km s−1) (M�) (M�) (Mvirial/Mcf) (K km s−1)
A 18:29:49.89 01:15:15 8.61 2.30 1.1 9.0 9.3 1.0 1.15 2.42
B 18:29:48.43 01:17:04 8.55 1.83 1.1 5.4 8.3 1.5 0.90 1.90
C 18:29:46.97 01:14:31 8.65 1.33 1.4 4.7 12.9 2.7 1.10 2.17
D 18:29:55.43 01:16:25 7.73 0.98 1.3 1.9 11.8 6.2 0.50 0.74
E 18:29:59.40 01:13:04 7.43 1.00 2.2 2.0 25.2 12.6 0.60 1.99
F 18:30:00.87 01:11:58 8.29 1.63 1.8 7.1 23.4 3.3 1.35 2.89
G 18:29:55.75 01:12:53 8.36 0.70 1.4 1.6 8.5 5.3 0.90 1.33

NW 18:29:49.89 01:15:15 8.61 9.06 1.2 31.3 33.2 1.1 1.00 2.42
SE 18:30:00.87 01:11:58 8.29 7.49 1.9 26.0 70.3 2.7 1.00 2.89

The NW and SE sub-clusters are extended regions, and
therefore, the peak positions and velocities correspond to one of
the smaller identified clumps lying within the sub-cluster. The
NW sub-cluster peaks at the position of clump A (& SMM1)
and the SE sub-cluster peaks at the position of clump F (north
of SMM11). Similarly, the velocities quoted for the peak for the
sub-clusters are not the mean velocity of the sub-clusters, but the
velocity at the peak of the strongest clump.

Note that even though both sub-clusters, SE and NW, have
similar masses (Mcf), they each have a different equilibrium
status, with a factor of 3 difference between their respective
virial ratio. Interestingly, even when considering some depletion
(Appendix B), the SE region is likely super-virial whereas the
NW, due to its smaller line width, is marginally sub-virial. About
67% of the mass in the NW region and 40% of the mass in the
SE region is associated with the clumps. Four of the clumps
(A, B, C and F) are individually within a factor of three of
being in virial equilibrium. Accounting for some depletion of
C18O (Appendix B), Mcf could increase up to a factor of 2.5,
which would make all these four clumps relatively bound struc-
tures. Clump D is a factor of ∼6 super-virial, and is likely to be
less affected by depletion as the dust densities are lower, likely
identifying this clump as part of a more diffuse region which
is less bound than the NW sub-cluster. Finally, even account-
ing for possible depletion, clumps, E and G, with mass ratios
of ∼13 and ∼5, are likely unbound structures. They may either
represent shocked regions where the line width is intrinsically
high (from 1.6 to 2.2 km s−1) or regions where, as mentioned
in Sect. 2.1.2, two blended velocity components contribute to
the emission along the same line of sight. The HFS fitting of a
single component in this case would result in a broadening of
the line width due to blending of the two components. However,
in Sect. 4.3 we see that even after separating the components,
the line width of at least one of them is still broader than seen
anywhere in the NW, pointing to a genuine broad line emission.
In summary, the SE sub-cluster is much more dynamic than the
NW, with a kinematic support a few times higher, both when
comparing individual clumps and the overall sub-clusters.

3.2. C17O 3D-Clumps

Although the 2D clumpfinding is valuable for comparison with
the dust continuum, it is limited in its ability to represent the true
structure of the cloud. The 3D clumpfind automatically studies
the datacube in all three dimensions of space-space-velocity. In
particular, 3D clumpfind should provide a better understanding
of the cloud’s structure where clumps may overlap along a line
of sight but have different velocities, or where the emission is
narrow in velocity making it weak in integrated intensity maps.
Therefore we have complemented the 2D study of the structure

Fig. 4. SCUBA map of the 850 μm continuum emission (colour scale)
overplotted with the positions of the submillimetre sources (triangles),
the C17O J = 1−0 2D-clumps (solid white contours and letters) and the
NW and SE sub-clusters (black dashed contours). The solid white con-
tours are the intensity integrated over the correspondent velocity range
for each clump. These are stepped by 0.2 K km s−1, except for weaker
2D-clumps G and D, stepped by 0.1 K km s−1 (in T ∗A). The lower level
of each clump is the same as the specified on Table 2. The NW and SE
sub-clusters contours are integrated intensity over the entire velocity
range. Contours are stepped by 0.25 K km s−1, with the lower contour
at 1.25 K km s−1 (in T ∗A).

of the C17O using the 3D version of the clumpfind within the
Starlink package.

Similarly to Pineda et al. (2009), we also found that the re-
sults on the 3D clumpfind analysis to be very sensitive to the
parameters used, especially in characterising the weaker emit-
ting regions. Stronger clumps were unequivocally detected with
a wide range of parameters, but changing the step size and/or
the number of pixels per clump allowed to be adjacent to a bad
pixel would result in the merging of several clumps into one, or
unrealistic extensive splitting of clumps into several small struc-
tures, or even non-detection of some structures expected to be
detected. For this reason, the initial 2D study is essential as a
reference point to understand the main structure of the cloud,
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Table 3. Properties of the 3D-clumps.

3D-clump RApeak Decpeak Vpeak Area FWHM Mcf Mvirial Ratio Tpeak

ID (J2000) (J2000) (km s−1) (arcmin2) (km s−1) (M�) (M�) (Mvirial/Mcf) (K)
1 18:29:51.0 1:15:04 8.64 3.93 1.0 9.0 10.5 1.2 2.0
2 18:29:49.2 1:16:09 8.56 3.46 1.4 7.3 20.0 2.7 1.6
3 18:30:01.6 1:11:47 8.67 2.30 2.0 6.3 31.2 4.9 1.3
4 18:29:49.2 1:09:57 8.20 1.43 0.3 0.6 0.4 0.7 1.1
5 18:29:47.0 1:13:58 8.80 1.53 1.2 2.5 9.1 3.6 1.0
6 18:29:55.0 1:12:41 8.51 1.13 1.1 1.3 6.4 4.9 0.9
7 18:30:10.3 1:13:25 8.09 1.00 0.4 0.6 1.0 1.7 1.1
8 18:29:44.8 1:17:04 8.80 1.77 0.9 1.2 5.3 4.4 1.1
9 18:29:47.0 1:09:24 8.41 0.73 0.4 0.3 0.6 2.0 1.0

10 18:30:00.1 1:12:52 7.68 1.13 1.5 1.6 13.7 8.6 0.8
11 18:29:58.7 1:15:04 8.23 0.73 0.9 0.8 4.0 5.0 0.8
12 18:30:06.0 1:11:58 7.36 1.07 1.2 0.8 8.4 10.5 0.7
13 18:29:57.9 1:15:48 7.88 1.67 0.6 0.7 2.6 3.7 0.7
14 18:29:57.2 1:11:47 8.67 0.90 0.8 0.4 3.0 7.5 0.7
15 18:29:55.7 1:16:20 7.73 1.37 0.8 0.6 3.9 6.5 0.8
16 18:29:47.0 1:11:48 8.80 0.93 0.3 0.2 0.3 1.5 0.7

which could be significantly misrepresented by relying, uncriti-
cally and exclusively on the 3D clumpfind analysis. The best
configuration parameters we found for this analysis were: the
first contour level, Tlow, of 0.6 K; the global noise level of the
data, rms, of 0.2 K; and the spacing between the contour levels,
ΔT , of 0.05 K.

This analysis identified a total of 16 clumps which will
be called the 3D-clumps hereafter. These clumps are shown in
Fig. 5 as integrated intensity maps in T ∗A km s−1 plotted over the
continuum 850 μm data from SCUBA. Table 3 shows the proper-
ties of the 3D clumps as numbered and plotted in Fig. 5. The nine
first columns are as in Table 2 the last column being the intensity
at the peak position in T ∗A. Once again, masses were calculated
after correcting for the IRAM 30 m telescope efficiency for the
C17O J = 1→ 0.

Due to the difficulty in interpreting partial spectra split by
3D clumpfind between multiple spatially coincident clumps,
the mean line width of the 3D-clumps was recovered using a
different approach to that used for the 2D-clumps. The velocity
dispersion, σ, of each clump was estimated by determining the
velocity range where the emission of the clump was above e−1/2

of its peak intensity. This was done by visually inspecting these
thresholded channel maps of each clump. The quoted FWHM is
2.35 σ and has an estimated uncertainty of 0.1 km s−1, twice the
uncertainty of the peak velocity, 0.05 km s−1.

The mass of the clumps within the NW sub-cluster inferred
from the size and integrated intensity of 3D-clumps 1, 2, 5 and
8 correspond to about 65% of the total mass of that sub-cluster.
Including clumps number 11, 13 and 15 in this calculation, the
fraction of gas-mass in the clumps rises to 70%. The 3D-clumps
3, 6, 10, 12 and 14 constitute 40% of the mass of the SE sub-
cluster. This is consistent with the results from the 2D-clumps.

Since the velocity structure in the region can affect the
deduced clump structure, we also experimented with 3D
clumpfind on the C18O J = 1 → 0 data. The results from
this differed from those of C17O only in that two clumps (3D-
clumps 3 and 10) were subdivided into 2 and 3 sub-clumps re-
spectively. Collectively, these sub-clumps had properties very
similar to their respective C17O clumps. The presence of these
possible sub-clumps does not significantly alter the interpreta-
tion of the region for the purpose of our analysis, indicating that
the C17O clumps adequately describe Serpens.

Fig. 5. SCUBA map of the 850 μm continuum emission (colour scale)
overplotted with all the C17O J = 1−0 3D-clumps integrated inten-
sity maps (contours and numbers). The numbering of the cores is based
on their peak intensity. The different contour style and colours identify
clumps starting at different contour levels. The white solid contours are
the clumps with the stronger integrated emission, with contours starting
at 1 K km s−1, the dashed yellow contours start at 0.3 K km s−1, and the
solid red contours start at 0.1 K km s−1 step. For all clumps, the contour
step is 0.1 K km s−1.

3.3. Structure of the region: combining information from 2D
and 3D-clumps

The north region has two clear clumps unequivocally identified
in both 2D and 3D methods: 2D-clumps A and B, which cor-
respond to 3D-clumps 1 and 2 respectively. Both peak close to
the position of the strongest submillimetre sources in this re-
gion (SMM1 and SMM9), and trace the gas around them in good
agreement to the cold dense dust traced by the 850 μm emission.

A region with higher velocity gas was detected with the 2D
analysis as 2D-clump C which corresponds to 3D-clump 5. This
region has quite strong integrated emission making it detectable
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in the 2D search. However, as it peaks at a very similar veloc-
ity to clump 1/A, the 3D search failed to separate these two in
some of our trial runs of the 3D analysis. This clump is associ-
ated with very little submillimetre continuum emission but quite
strong C17O (and C18O) emission. The fact that it is also seen in
N2H+ (Olmi & Testi 2002) and not in 12CO tracing outflows
(SFLPaper), is consistent with the possibility of this being a
denser region, close to being bound, directly associated with the
NW sub-cluster. It could, for example, be a very young prestel-
lar core about to become gravitationally unstable and collapse
(Walsh et al. 2007).

A region detected with the 3D analysis which was not seen
in the 2D search was 3D-clump 8. This clump is detected at high
velocities (8.8 km s−1) and seems to surround the clump 2/B as-
sociated with SMM9, perhaps as a shell. Although apparently
somewhat super-virial clump, if affected by a depletion of C18O
by a factor of 2–3 (Appendix B), this clump could be gas under-
going gravitational collapse.

Finally there is also a low velocity region situated at the left
of the main clumps of the NW sub-cluster - detected as a single
clump with the 2D method (clump D, in Fig. 4) and as three sep-
arate clumps with the 3D clumpfind (11, 13 and 15 in Fig. 5).
This region has a very small mass (∼1–2 M�) and is about 5
times super-virial. It seems to be a quiescent region at lower ve-
locities than the main cloud and connecting to the main cloud
very close to the edge of the NW sub-cluster as seen on dust
emission.

The bulk of emission on this NW sub-cluster presents a very
coherent structure in space and velocity throughout. It does not
appear to be as filamentary as the SE sub-cluster and the emis-
sion appears confined to relatively dense, cool compact regions.

The SE sub-cluster is quite different from the NW cluster,
both in spatial structure and velocity, even though this is not ob-
vious from the dust emission. Note the higher virial ratios for the
clumps within the SE sub-cluster, when compared to the ones in
the NW, supporting once again the idea of more kinetic support
in the south, even when the 3D velocity-separated clumps are
considered. Comparing the 2D and 3D results, shows the C17O
emission is more complex with none of the gas emission peaks
coincide with any of the compact submillimetre sources. The
main peaks of the C17O emission in this region lie in the fil-
ament seen in dust continuum emission, between the compact
sources. The 2D-clumps E and F were detected as 3D-clumps
10 and 3 respectively. However, the 3D search found a more dif-
fuse clump, 3D-clump 12, which peaks east of the filament but
with its edges still overlapping spatially with 3D-clump 10 and
3, having lower velocities than these two: 7.36 km s−1 of clump
12, versus 7.68 km s−1 and 8.67 km s−1 of clump 10 and 3 re-
spectively. Despite being adjacent, and with overlapping edges,
3D-clumps 3 and 10 have a difference of 1 km s−1 between their
peak velocities. There is a similar velocity difference between
clump 10 and clump 6, west of the filament: 3D-clump 6, de-
tected in the 2D analysis as 2D-clump G, has a peak velocity of
8.51 km s−1, ∼0.8 km s−1 higher than its neighbour. These four
3D-clumps (3, 6, 10 and 12), with two sets of different peak
velocities (at ∼7.5 km s−1 and ∼8.5 km s−1), overlap with each
other at low intensities mainly throughout this filamentary struc-
ture of the SE sub-cluster, even though their emission peaks are
spatially offset. This also shows that the double velocity structure
in the SE sub-cluster (Sect. 2.1.2) is to some extent, recoverable
from a single line fit using a 3D clumpfind analysis.

The remaining clumps detected in the SE sub-clusters trace
the less dense gas around this main filament. These were not
detected in the 2D search mainly due to their very narrow line

widths, between 0.3 and 0.5 km s−1, making them faint in inte-
grated intensity maps. Note that the dominant emission detected
east of the filament has lower velocities (3D-clump 7 has a peak
velocity of 8.09 km s−1), whereas the regions detected to the west
have higher velocities (3D-clumps 4, 9 and 16), with mean ve-
locities from 8.20 km s−1 to 8.80 km s−1.

Globally, there appears to be a velocity gradient from east to
west of nearly 1 km s−1 over slightly more than 0.1 pc. However,
this is not a smooth gradient throughout, as in the filamentary
structure there are spatially-overlapping clumps with very dif-
ferent velocities. This velocity structure is further investigated
using the C18O lines, which are not split by hyperfine structure
in Sect. 4.2.

4. Dynamics of the cloud: velocity and line width

4.1. Outflows

One important issue when studying gas dynamics in regions of
active star formation is the extent to which the line widths of
molecular species are influenced by outflows. Using the avail-
able data, we looked for the influence of outflows on the size
scale of the cores by investigating the spectra associated with all
the submillimetre sources, looking for possible wing emission.

Although wings on C18O lines have proven to be able to
trace outflow interaction (Fuller & Ladd 2002), in Serpens and
with the 0.45 K rms noise of our dataset (Sect. 2.1) no wings
were found. The lines towards sources with known outflows are
well fitted by a single Gaussian. For example, Fig. 3 (top panel)
shows the C18O towards SMM1, a source known to have an out-
flow, e.g. Hurt & Barsony (1996), is well represented by a single
Gaussian component. In the SFLPaper, we have also searched
for evidence of the influence of outflows in the C18O emission
by comparing the C18O J = 3 → 2 emission to the 12CO
J = 3 → 2 emission tracing the outflows. No correlation nor
anti-correlation between the C18O emission and the outflows is
found in the region. Both these approaches lead us to conclude
that the Serpens C18O emission is not influenced by outflows
and, therefore, the velocity components we detect in C18O are
related to the global cloud dynamics.

4.2. Position-velocity structure

As revealed by the C17O (Sect. 3.1), the NW region is mostly
traced by higher velocity emission, the exception being the re-
gion offset to the east of the sub-cluster. On the other hand, the
SE is not so homogeneous, containing both higher and lower ve-
locity components, which overlap approximately where the fil-
amentary structure is seen in the continuum observations. The
C18O shows very well defined double peaked emission along
the southern region, that starts disappearing as we move north.
Figure 3 shows two examples of spectra in this region, and Fig. 9
shows the evolution of the double component along the map.
The existence of a double-peaked spectrum in other optically
thin tracers such as N2H+ (Olmi & Testi 2002) rules out self ab-
sorption as an explanation of the double peaked C18O emission
(cf. Sect. 2.1.2).

On the basis of a study of the line centroid velocity (de-
spite the presence of double peaked lines) Olmi & Testi (2002)
argued that the region is undergoing global rotation. However
position-velocity diagrams of horizontal slices along the C18O
map are incompatible with this interpretation (Figs. 6 and 7 to
9). Moving from north to south, and slicing at the declination of
each SMM source, we can see the two separate clouds, very well
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Fig. 6. SCUBA 850 μm map of Serpens in colour scale and contours
(contours as in Fig. 1), showing the cuts used for the position-velocity
diagrams of C18O J = 1−0 emission (Figs. 7–9). The cuts made cross-
ing the SMM sources are denoted as PV#, where # is the number of the
cut, starting from the north. There are two cuts which are denoted as
“dust” which do not intercept any source, but were made to understand
the velocity structure around the dust filament.

distinguished close to SMM11. For simple rotation, we would
expect to see a smooth gradient along the velocity axis as the RA
changes. Instead we observe two velocity components, clearly
separated in the southern part of Serpens (see e.g. PV10) and
merging together when moving to the north of the sub-cluster
(see e.g. PV7). At this point, the two components are barely dis-
tinct lines, producing broad, non-gaussian profile. Furthermore,
the SMM sources in the SE sub-cluster appear at the edges of
the double velocity region (hereafter referred to as the interface),
whilst the filamentary structure seen in dust follows the interface
region itself (see the PV diagrams labeled as “dust” in Figs. 8
and 9).

The lower velocity cloud (hereafter LVC) appears to be inter-
acting with the high velocity cloud (hereafter HVC), apparently
provoking the enhanced dust emission between SMM2, SMM3,
SMM4 and SMM6 - and also the elongated filament that extends
south towards SMM11 and beyond. A dynamical interaction
between two clouds, as indicated by this space-velocity struc-
ture and the turbulent motions found towards the south, might
have triggered this episode of star formation along the filament
(Sect. 6).

4.3. Decomposition of the C18O line components

To investigate the velocity structure of the C18O J = 1 → 0
emission we have decomposed the datacube in two, by fitting
two velocity components to the C18O spectra and then creating a
model datacube from the Gaussian fits, for each of the two com-
ponents. The results of this decomposition are shown in Figs. 10
and 11.

PV1

PV2

PV3

PV4

Fig. 7. Position-velocity diagrams of the C18O J = 1→ 0 emission. The
cuts are horizontal slices of the map, as shown in Fig. 6. The sources
name and RA position are indicated in each figure (dashed line). The de-
clinations are presented in Table 1 and the RA varies from 18h30m06s to
18h29m46s (from 0 to –300′′ offset respectively). The gray scale shows
the ine intensity in T ∗A.
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PV5

PV6

PV7

dust

Fig. 8. Same type of position-velocity diagrams as Fig. 7 for the SE
sub-cluster. The RA also varies from 18h30m06s to 18h 29m46s (from
0 to –300′′ offset respectively). PV diagrams displayed in descending
declination, as they appear in Fig. 6.

PV8

PV9

dust

PV10

Fig. 9. (Same as Fig. 8) Remaining position-velocity diagrams of the
SE sub-cluster as plotted in Fig. 6.
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The data were first rebinned to 0.1 km s−1 velocity chan-
nels. Then, for each spectrum, the line was fitted with a single
Gaussian and then a double Gaussian. The two Gaussian fit was
selected as the model for the line only if: i) the difference be-
tween the central velocities of the two Gaussian fit (ΔV) was
greater than 0.35 km s−1 or ii) both lines were relatively strong
with the peak intensity ratio of the stronger to the weaker line
less than 2.4. The value of 2.4 was determined by a careful anal-
ysis of various line fits which showed that if the ratio was more
than 2.4, the weaker line fit was poorly fit. The remaining spec-
tra were fitted with a single Gaussian. An example of this fitting
is shown in Fig. 3 (lower panel). From this fitting procedure, two
model datacubes were created, one for each velocity component,
allowing us to study the two clouds separately. The higher veloc-
ity component (HVC) of the double peaked lines, as well as the
single lines with central velocity greater than 7.8 km s−1, were
included in the HVC datacube; lower-velocity lines and single
lines peaking below 7.8 km s−1 were incorporated in the LVC
model datacube.

Figure 10 shows the spatial distribution of the LVC and HVC
using the integrated intensity from the model datacubes. Overall,
the HVC traces the distribution of the 850 μm continuum emis-
sion better than the LVC. The HVC emission is stronger in the
north, but it lies along the filament containing both sub-clusters,
extending roughly in a SE-NW direction. The LVC is roughly
aligned along the S-N direction and is stronger in the south,
where it meets the HVC.

Figure 11 shows again the integrated intensity of the mod-
elled datacubes for each component, but shows also the velocity
structure of each cloud. In the NW sub-cluster, the HVC appears
at velocities around 8.4 km s−1, with the exception of a few re-
gions at the edges of the cloud, which appear to reach veloci-
ties as high as 8.8 km s−1. The region which stands out from the
bulk of this sub-cluster is the region SW of SMM1, which is
not present in the dust emission even though it is rather strong
in gas emission, having the highest velocities of the entire cloud
(reaching 9 km s−1). The LVC, in the NW sub-cluster, is spatially
offset to east, with velocities of 7.5–7.8 km s−1, similar to most
of the emission in the south.

The region between the two sub-clusters, dominated by the
emission from the HVC, has the systemic velocity of Serpens
(around 8.0 km s−1) possibly due to the merging of the two com-
ponents. Note that the emission here is rather weak, and the pres-
ence of SVS2, a more evolved (flat spectrum) near-IR source
(Kaas et al. 2004), suggests this region may be more evolved.

In the SE sub-cluster, the HVC velocities range from 8 and
8.5 km s−1, being higher towards the southern end of the fil-
ament. On the other hand, the LVC shows a velocity gradi-
ent increasing from west to east – contrary to the HVC. The
material west of the southern filament, has velocities of about
6.8–7 km s−1. At the centre of the filament the velocities are
around 7.5 km s−1, translating into a gradient of ∼5 km s−1 pc−1.
To the east of the filament the velocities are approximately con-
stant and around 7.5 km s−1. Therefore, it seems that the clouds
have a greater offset in velocities in the far-south end of the fil-
ament, converging into one intermediate velocity as one moves
north. When two lines can no longer be separated, the emission
becomes a single broader line, centered at the intermediate ve-
locities (∼8 km s−1).

The line width in the SE sub-cluster, specially where the two
components merge, is around 2 km s−1. This is almost twice
the line width of the NW (∼1 km s−1). This difference is re-
flected as a four times higher kinetic support in the SE region, in
comparison to the NW region. This is consistent with the C17O

J = 1→ 0 analysis (Sect. 3.1), where it was showed that the NW
sub-cluster is a bound structure, whereas the SE sub-cluster was
somewhat super-virial. The SE is therefore much more dynamic
than the NW, as already foreseen by the C17O analysis.

5. Physical properties: temperatures
and column densities

The optical depth of the C18O can be estimated from the ratio
of the integrated intensities of the C18O and C17O J = 1 → 0
transitions. Over the mapped region the observed ratio shows lit-
tle coherent spatial structure and is approximately constant with
a value consistent with the abundance ratio of the species, ∼3.5
(e.g. Penzias 1980; Frerking et al. 1982) implying the emission
from both species is optically thin.

To better understand the correlation between the dust and gas
in this region, Fig. 12 shows a pixel-by-pixel comparison of the
850 μm flux density against the integrated intensity of the three
transitions of C18O, all convolved to a common resolution of
24′′. For the purpose of these scatter plots, we have oversampled
the data to a pixel size of 2.5′′, in order to better distinguish the
trends.

Overall, the distribution of points is very similar for the three
transitions. There is a general correlation between dust and gas,
especially for the weaker emission (Fig. 12). However, the dis-
tributions also show structure which consistently appears across
all three transitions. The very prominent peaks of dust emission
corresponding to the stronger submillimetre sources are obvious,
and although in general there is an increase in the C18O emission
at these positions, the dust peaks do not correspond to global
peaks in the C18O emission. Indeed the nature of the relation-
ship between the C18O emission and the dust appears different
in the NW and SE sub-clusters.

Focusing on the NW region (blue in Fig. 12), the plots are
dominated by the two dust peaks, each of which is associated
with a well defined, but separate, increase in C18O emission.
Comparing the C18O intensity, the emission becomes weaker
moving to higher energy transitions. On the other hand, the SE
sub-cluster (green in the figure) shows a different trend from
transition to transition, becoming stronger at higher transitions.
In addition, there appears to be a more pronounced general
correlation in this region between the dust and line emission.
Nevertheless, there are clearly structures departing from this
trend: several 850 μm peaks corresponding to SMM sources;
and C18O peaks, which do not have significant submillimetre
emission.

5.1. LTE analysis

From the dust continuum emission, the volume densities in the
Serpens sub-clusters are typically higher than the critical densi-
ties of each of the three transitions (Table 4) observed here. We
therefore initially calculate the gas properties assuming LTE (lo-
cal thermodynamic equilibrium) using a rotation diagram anal-
ysis. Despite its uncertainties, the rotation diagram method is
robust in retrieving the column density structure and trends
throughout the region, as well as the approximate absolute col-
umn densities.

Figure 14 shows a map of the excitation temperature across
the region constructed from the 24′′ resolution integrated inten-
sity maps sampled with 5′′ pixels (as in the original IRAM data).
This shows the NW and SE sub-clusters to have different tem-
perature structures. The NW appears very homogeneous with
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Fig. 10. Integrated intensity maps as a result of the separation of the two line components of the C18O J = 1−0 transition, under the assumption of
two different clouds seen along the line of sight. The LVC is shown on the left and HVC on the right. The background grey scale shows the 850 μm
emission tracing the cold dust, with its respective submillimetre sources plotted as triangles. The contours represent the integrated intensity of
the modelled Gaussians (fitting the data in T ∗A). Contour key: left (LVC) at 0.2 K km s−1 (dashed) and 1.5, 2.5, 3.2 and 4.0 K km s−1 (solid); right
(HVC) at 2.5 and 3.0 K km s−1 (dashed) and 3.2, 4.0, 5.0, 5.5 and 6.0 K km s−1 (solid).

Fig. 11. Velocity structure maps of Serpens, as a result of the separation of the two line components of the C18O J = 1−0 transition. As in
Fig. 10, the LVC is represented on the left and HVC on the right. The submillimetre sources are plotted as triangles, and the contours represent
the integrated intensity as in Fig. 10. The colour scale is now the centroid velocity of the same modelled Gaussians, where the light pink colour
represents the lack of a fit to that velocity component.

no significant temperature peaks and with temperatures ranging
from 9 to 10 K. In contrast the SE region has both higher tem-
peratures, ranging from ∼10 to 14 K and a much more peaked
distribution. Interestingly, this enhanced temperature in the south
does not peak on the SMM protostars but rather between them,
along the dust filament which corresponds to the interface region
seen on the PV diagrams (Figs. 8 and 9).

The C18O column density map (Fig. 15) calculated from the
rotation diagram recovers more of the dust structure than the
temperature map. Both the south and north sub-clusters are evi-
dent as denser regions, even though the dust and gas column den-
sities peaks are not always coincident, especially in the SE. The
mean C18O column densities are very similar in the north and
the south. The regions with higher gas column density (the entire

NW sub-cluster and the filament between SMM11 and SMM2 in
the SE sub-cluster) have a lower temperature. Conversely the re-
gions with slightly lower gas column density (between SMM2,
SMM4, SMM3 and SMM6 in the SE sub-cluster) have higher
temperature. The region south-west of the NW sub-cluster which
appears to have a relatively high gas column density seems to
have very similar properties to the rest of the NW sub-cluster
and yet it is not detected in dust emission.

5.2. Non-LTE analysis

To better understand the physical conditions of Serpens and the
apparent discrepancies between the gas and dust emission, we
have selected 4 key positions in the NW and another 4 in the
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Fig. 12. Scatter plots of the SCUBA 850 μm dust emission against
the C18O integrated intensity over the whole range of velocities (top:
J = 1 → 0, middle: J = 2 → 1, bottom: J = 3 → 2). Blue points show
the NW sub-cluster and green points the SE sub-cluster. The four posi-
tions chosen in each sub-cluster to investigate with non-LTE modelling
shown on the middle panel for the NW region and the lower panel for
the SE region. These positions are also indicated in Fig. 13.

Fig. 13. Map showing the positions of the selected regions for the non-
LTE RADEX study indicated by blue and green circles (for the posi-
tions in the NW and SE sub-clusters, respectively) and labeled as in
Fig. 12. The contours and colour scale show the SCUBA 850 μm emis-
sion as in Fig. 6.

Table 4. Critical densities (ncritical) at 10 K and 20 K for C18O.

C18O Au Ku ncritical

transition (s−1) (10−11 cm3s−1) (103 cm−3)
10 K–20 K 10 K–20 K

J = 1→ 0 6.266 × 10−8 3.3–3.3 1.9–1.9
J = 2→ 1 6.011 × 10−7 7.2–6.5 8.3–9.3
J = 3→ 2 2.172 × 10−6 7.9–7.1 27–30

These values were derived using the information provided by the Leiden
Atomic and Molecular Database (Schoeier et al. 2005): Au being the
Einstein Coefficient for the upper level, and Ku the respective collision
rate at both 10 K and 20 K.

SE using the scatter plots (Fig. 12) for more detailed analysis.
The selected positions are indicated in Fig. 13. These positions
correspond to interesting features in the correlations between the
dust and gas emission, selected to span the range of the correla-
tion. For these positions we performed a non-LTE analysis using
RADEX3.

We created a 500 × 500 grid of gas column density (rang-
ing from 1012 to 1019 cm−2) and temperature (ranging from 5 K
to 40 K). For each grid point we used RADEX to calculate
the C18O integrated intensities for all three transitions (denoted
as I(Jup−Jlow)). For each position modelled, a volume density de-
termined from the submillimetre dust continuum emission was
adopted, assuming a cloud depth of 0.2 pc (based on the pro-
jected size of the dust emission), a dust opacity of 0.02 cm2 g−1

at 850 μm (van der Tak et al. 1999; Johnstone & Bally 2006)
and a dust temperature of 10 K for all but three positions.
The three exceptions are: position NA (≡SMM1) where 38 K
was adopted from the SED fit by Davis et al. (1999), and

3 RADEX is a statistical equilibrium radiative transfer code, avail-
able as part of the Leiden Atomic and Molecular Database (http://
www.strw.leidenuniv.nl/moldata/). The formalism adopted in
RADEX is summarized in van der Tak et al. (2007).
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Fig. 14. LTE excitation temperature map in colour scale. The dot-
ted black contours show the dust 850 μm emission at 0.6, 1.2 and
1.8 Jy beam−1.

positions NB (≡SMM9) and SA (≡SMM4), where we adopted
a temperature of 25 K, consistent with the >20 K determined
by Davis et al. (1999). For each of the southern positions, we
assumed the H2 volume density to be the same for both C18O
velocity components. Changing the dust temperature or the as-
sumed cloud depth changes the estimated the H2 volume den-
sities, however this only becomes important if the derived vol-
ume densities becomes lower than the critical densities for our
transitions. We have tested these effects using RADEX, and the
resulting column densities and kinetic temperatures remain unaf-
fected by changes in the assumed dust temperature between 10 K
and 40 K, or in the assumed depth between 0.1 pc and 0.3 pc.
If the transitions are thermalised, only the fractional abundance
of C18O will be affected by changing the assumed H2 column
density.

The central velocity, line widths and integrated intensity of
each transition were retrieved from the data by fitting the av-
erage spectrum within a 5′′ radius of each position. The cen-
tral velocity and line widths shown in Table 5 are the average
over the three transitions, and have an uncertainty of the order of
0.1 km s−1. For the 4 positions in the NW sub-cluster, this pro-
cedure is straight-forward as the lines of all three transitions are
well represented by single Gaussians. However, the spectra of
the SE sub-cluster positions, having two velocity components,
was separately fitted with 2 Gaussians in order to investigate any
possible differences between the two components. We used a χ2

comparison to find the best fit of the RADEX models to the ob-
served ratios I(1−0)/I(2−1) and I(1−0)/I(3−2) as well as the absolute
value of I(1−0).

In calculating the χ2, the relative errors of the input inte-
grated intensities were assumed to be equal to the relative er-
rors in the intensity, Tmb, given by the rms of the line fit given
by class. The results from the RADEX models are presented
in Table 5. For comparison, the table also includes the tem-
perature and column densities retrieved using the rotation dia-
gram method. The χ2 surfaces are shown in Appendix A, while
Appendix B shows the input and best fit integrated intensities

Fig. 15. Column density map (colour scale) derived from the rotation
diagram method. The dust 850 μm emission is overplotted in dotted
black contours, at the same levels as in Fig. 14.

for the three lines, as well as the implied abundances from the
non-LTE analysis.

Table 5 shows that in the NW region the LTE (rotation dia-
gram) and non-LTE (RADEX) analyses are in good agreement.
Both the rotation diagram and RADEX show variations in Tex of
only 1 K. They produce absolute values of temperature which
differ by at most 10%, and the trend in temperature between
positions is similar. Comparison of the C18O column densities
and the H2 column density calculated from the dust continuum
emission at the same positions, imply C18O abundances a fac-
tor of ∼2.5 smaller than typical values (Appendix B). Given
the low optical depth of the C18O emission (Sect. 5), the low
C18O column density, and hence abundance, implies that the
C18O is depleted with respect to the molecular hydrogen, even
in the warmer envelope of SMM1, consistent with the results of
Hogerheijde et al. (1999).

Somewhat surprisingly given the low optical depth of the
C18O and despite its depletion, neither the LTE nor the non-
LTE analysis finds evidence of increased temperatures towards
the apparently warmer inner regions of the embedded protostars.
Although the dust emission indicates the presence of warm dust
towards the protostars (Davis et al. 1999), the C18O emission
implies low and uniform temperatures. Although dilution of the
warm inner region within the 24′′ beam may contribute to the
difficulty in detecting the warmest gas, it is surprising that no
evidence of any temperature increase is seen. CO is predicted
to freeze-out on to grain surfaces at temperatures below ∼18 K,
consistent with the low C18O excitation temperature, but not at
dust temperatures of, for instance, ∼30 K seen towards SMM1.
Since this is above the sublimation temperature of pure CO ice
it is possible the CO could be trapped in a water rich ice, which
would only sublime and return CO to the gas phase at tempera-
tures of ∼100 K (e.g. Visser et al. 2009).

The southern region is more complex. In terms of column
density, for all four positions the non-LTE results show the LVC
to have slightly higher column density that the HVC. We find
that the LTE and non-LTE approaches agree in the sense that
the northern positions and SD have higher values of C18O total
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Table 5. Modelling results for the 8 positions selected from the scatter plots (Appendix A).

H2 Line Central non-LTE non-LTE LTE
Position volume density width velocity column density Tkin Texc

(×105 cm−3) (km s−1) (km s−1) (×1015 cm−2) (K) (K)
NA 2.60 1.6 8.5 15.4 11.7 10.3
NB 2.25 1.5 8.4 11.9 10.6 9.5
NC 1.62 1.9 8.5 11.9 10.5 9.5
ND 6.50 1.4 8.5 13.5 11.4 9.5
SA1 2.98 2.2 7.8 6.4 18.2 13.4
SA2 2.98 1.0 8.3 4.2 6.6
SB1 3.99 1.5 6.9 6.0 11.9 12.7
SB2 3.99 1.1 8.5 4.4 14.8
SC1 6.28 1.7 7.7 5.8 11.7 10.2
SC2 6.28 1.2 8.7 1.4 14.2
SD1 7.81 1.1 6.9 7.3 16.6 12.8
SD2 7.81 1.4 8.2 5.8 14.4

Positions starting with N are in the NW sub-cluster while positions in the southern region start with S. For the positions in the SE, the labels 1 and
2 identify the low and high velocity components respectively.

column density (summed over both velocity components where
necessary). These are followed with decreasing column density
by SB, then SA and finally SC .

SA is at the position of SMM4, where there are two com-
ponents of the C18O emission, a strong low velocity compo-
nent (SA1) plus a weaker high velocity component (SA2). In
the J = 3 → 2 transition, the high velocity component becomes
faint and difficult to separate from the lower velocity component
(see Table B.1 in Appendix B). This weak J = 3 → 2 emis-
sion constrains the temperature to 6.6 K for the higher velocity
component (SA2). At SC the two cloud components are also sig-
nificantly blended. The temperature of the LVC at this position
(SC1) is ∼11 K, constrained within ∼1 K (Appendix A), with the
weaker HVC warmer, but somewhat less well constrained.

In general, in the south, the lower velocity component has
a higher temperature toward the most central positions studied
(SA and SD). Then at SB and SC, at the edges of the dust emis-
sion, the temperatures are similar with both components still
higher than the temperatures generally found to the north (∼12 K
and 14 K in the south versus ∼11 K in the north). Overall, and
with the exception of SA, the HVC has higher temperatures than
in the north, around ∼14 K. On the other hand, the LVC traces
the temperature trend as identified by the LTE study (Fig. 14)
better than the HVC, but the absolute LTE temperatures are be-
tween the non-LTE values for LVC and HVC.

Therefore, we conclude the temperature rise toward the south
is real. Such a rise is consistent with a scenario where this region
is tracing the interaction/collision between two clouds, with a
shock layer with higher temperatures and complex motions at
the interface.

6. Discussion

6.1. Two different sub-clusters in Serpens

Our study of the Serpens Main Cluster has shown that two ap-
parently very similar protoclusters as seen in submillimetre dust
continuum emission can reveal very different dynamical and
physical properties in molecular lines. Despite all the outflows
seen in 12CO in the region, the denser gas around the cores seen
in C18O and C17O does not seem to be perturbed and is able to
provide details of the quiescent material in the cloud.

In the NW sub-cluster the bulk of emission has a ve-
locity around 8.5 km s−1. However, there is a lower velocity

component of the gas east of the sub-cluster (Fig. 7) with the
transition between these component being rather smooth. The
velocity difference between the submillimetre sources in this
sub-cluster is small, ranging from 0.1 to 0.3 km s−1.

The physical conditions in this NW sub-cluster are also
rather coherent. Temperatures and column densities derived
from both LTE and non-LTE analyses are consistent and show
little variation within the sub-cluster. The C18O emission peaks
are mostly consistent with the dust peaks. Clump-finding studies
of this region retrieved two main peaks which are directly related
to the two stronger submillimetre sources in the NW sub-cluster:
SMM1 and SMM9. However there are no evident temperature
peaks associated with the submillimetre sources. The remaining
gas emission in the sub-cluster is either associated with these
main peaks or weaker structures surrounding the main bulk of
the dust emission. The gas column density very closely follows
the clumps/integrated intensity distribution of the gas, particu-
larly in the lower J transitions tracing the colder gas.

The SE sub-cluster on the other hand is a much richer re-
gion in its dynamics and properties. There are two velocity com-
ponents/clouds along the line of sight, clearly identified using
both clump-finding and position-velocity diagrams. These two
clouds appear to be interacting. They are more offset in veloc-
ity in the south and start to mix moving to the north within the
sub-cluster. Furthermore, the submillimetre sources in this re-
gion appear at the edges of the interface of the two components,
whereas the dust filament appears in the interface. Most of the
southern submillimetre sources appear to have a stronger asso-
ciation with the HVC, despite having some emission from the
LVC along the same line of sight. A counterexample however is
SMM2 which, as can be seen in the PV diagrams, has a stronger
C18O J = 1 → 0 lower velocity component. The overall dust
filament, as seen in 850 μm, coincides with the N-S lane where
the two components overlap, suggesting it is tracing the interface
region between the components, the region where they are inter-
acting. Ultimately, this interaction might have been responsible
for triggering the star formation episode in the SE sub-cluster.

In contrast to the NW sub-cluster, the LTE temperature in
the SE sub-cluster is both higher and more structured, peaking
close to the ridge of dust continuum emission. Unlike the north,
the two velocity components in the south are difficult to fit with
a single well defined temperature. The general trend, however,
points to higher temperatures in the southern sub-cluster than in
the northern sub-cluster.
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The modelled column density map (Fig. 15) closely traces
the emission from the lower transitions (J = 1 → 0). The high
C18O column density regions in the SE are not associated with
any of the submillimetre sources, but rather the southern fil-
ament. The region with enhanced temperature, however, does
not coincide with the highest column density regions. The uni-
form dust emission over this SE region results from the southern
filament having lower temperature but higher column density
whereas the northern part of the SE sub-cluster is slightly less
dense, but warmer, resulting in equivalent 850 μm dust emission.

6.2. A proposed scenario

The velocity, temperature and density structure of Serpens sug-
gest a more complex picture than simple rotation which has pre-
viously been invoked to explain the velocity structure (e.g. Olmi
& Testi 2002).

It is known that cloud-cloud or flow collisions happen
in the Galaxy as molecular clouds move within the spiral
arms. Furthermore, simulations of cloud-cloud collisions (e.g.
Kitsionas & Whitworth 2007) have shown that density enhance-
ments in the collision layers can be high enough to trigger star
formation. Additionally, clouds are commonly seen as filamen-
tary structures, not only during, but also prior, to star formation.
We suggest that the two velocity components seen in Serpens
are tracing two clouds along the line of sight and that the inter-
action of these clouds is a key ingredient in the star formation in
Serpens.

We propose that we are seeing two somewhat filamentary
clouds traveling toward each other and colliding where the
southern sub-cluster is being formed. The cloud coming toward
us is to the east while the cloud moving away from us is to
the west, and represents the main cloud. An inclination angle
between the two filaments could explain why the two velocity
components are spatially offset in the north but overlapping in
the south. This scenario explains both the double peaked profiles
of the optically thin lines and their distribution along what has
previously been identified as the “rotation axis” of this region.

If the north region was initially close to collapse, the direct
collision of the clouds in the south could indirectly trigger or
speed up this collapse in the north without significantly enhanc-
ing the temperature or perturbing the intrinsic, “well behaved”
velocity and column density structure. In the south, however,
such a collision makes it easy to understand why the density and
temperature enhancements are not necessarily associated with
the sources, as they are being generated by an external trigger:
the collision.

Note in addition, that in the south, unlike the majority of
the sources in the north, there is a poor correlation between the
submillimetre sources (Davis et al. 1999) and 24 μm sources
(Harvey et al. 2007b), as shown in Fig. 1, suggesting a wider
spread of ages of the protostars in the south than in the north.
Such an age spread would be consistent with a collision in the
sense that a collision is not a one-off event but rather an ongoing
process.

A first test to this collision scenario is the timescale for which
such clouds would cross each other, their interaction time. We
assume that each cloud is a filament of radius of 0.1 pc (similar
to the size of the dust 850 μm emission). In addition we adopt a
collision velocity of 1 km s−1 (approximately the mean observed
velocity difference, along the line of sight, between the two com-
ponents). The timescale from when the clouds start colliding un-
til they are completely separated, assuming a head on collision,

is 4 × 105 years, consistent with the estimated ∼105 year age of
the region (Harvey et al. 2007a; Kaas et al. 2004).

Several simulations of cloud collisions such as proposed
here exist in the literature. For example, SPH simulations of
clump-clump collisions from Kitsionas & Whitworth (2007),
have shown that two approaching clumps with a slow collision
velocity of 1 km s−1 (Mach number of 5), can indeed trigger star
formation in the collision layer. Specific simulations of the pro-
posed collision in Serpens will be presented in a subsequent pa-
per (Duarte-Cabral et al. 2010, in prep.)

7. Conclusions

The dynamics and structure of the Serpens Main Cluster have
been studied in detail, as an example of a complex low mass star
cluster forming region. This study has provided a view of the dy-
namics and structure of the region. The Main Cluster comprises a
very young star forming region subdivided into two sub-clusters.
A careful investigation of the clump structure and excitation in
the region shows that these two sub-clusters have similar overall
masses but quite different properties.

The NW sub-cluster is homogeneous in velocity and temper-
ature structure, with the submillimetre sources well correlated
with the gas peaks as well as with the 24 μm sources. On the
other hand, in the SE sub-cluster there are two velocity compo-
nents in the gas and the gas temperature is more variable. The
gas column density and temperature peaks do not coincide with
the submillimetre sources, but rather lay in the regions between
them. Furthermore, the 24 μm sources in the south are poorly
correlated with the dust emission.

Our analysis suggests a scenario of cloud-cloud collision
triggering the star formation in the SE cub-cluster, potentially in-
ducing perturbations which indirectly affect the NW sub-cluster,
hastening somewhat its collapse. SPH simulations of this sce-
nario, to better understand how well it can reproduce observ-
ables, such as the velocity profile and the column density prop-
erties of the region, will be presented in a future paper.
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Appendix A: χ2 surfaces for RADEX fits

Figures A.1–A.8 show the χ2 surfaces from the non-LTE anal-
ysis of the line integrated intensity ratios for each of the posi-
tions studied. The χ2 has been calculated using Eq. (A.1), where
Iobs
(Jup−Jlow) is the observed integrated intensity of the transition be-

tween Jup and Jlow, Δ(x) is the uncertainty on the quantity x and,
finally, Iradex

(Jup−Jlow) is the integrated intensity for each transition as
modelled by RADEX, for each combination of temperature and
gas column density

χ2 =

⎛⎜⎜⎜⎜⎜⎝ Iobs
(1−0)/I

obs
(2−1) − Iradex

(1−0)/I
radex
(2−1)

Δ(Iobs
(1−0)/I

obs
(2−1))

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝ Iobs
(1−0)/I

obs
(3−2) − Iradex

(1−0)/I
radex
(3−2)

Δ(Iobs
(1−0)/I

obs
(3−2))

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝ Iobs
(1−0) − Iradex

(1−0)

Δ(Iobs
(1−0))

⎞⎟⎟⎟⎟⎟⎠
2

· (A.1)

For each case, the χ2 is plotted as a function of the RADEX
output temperature and gas column density. Given the use of 3
quantities in the fit, we consider χ2 < 3, i.e. the reduced-χ2 < 1
a good fit. All figures have contours at χ2 = 1, 2 and 3 with the
exception of ND (Fig. A.4) and SD (Fig. A.8).

Fig. A.1. χ2 surface for the integrated intensity ratios at position NA.

Fig. A.2. χ2 surface for the integrated intensity ratios at position NB.

Fig. A.3. χ2 surface for the integrated intensity ratios at position NC.

Fig. A.4. χ2 surface for the integrated intensity ratios at position ND.
Contour at 25.
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Fig. A.5. χ2 surfaces for the integrated intensity ratios at position SA: SA1 (LVC) on the left, and SA2 (HVC) on the right.

Fig. A.6. χ2 surface for the integrated intensity ratios at position SB: SB1 (LVC) on the left, and SB2 (HVC) on the right.

Fig. A.7. χ2 surface for the integrated intensity ratios at position SC: SC1 (LVC) on the left and SC2 (HVC) on the right.
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Fig. A.8. χ2 surface for the integrated intensity ratio at position SD: SD1 (LVC) on the left, and SD2 (HVC) on the right. Note the different colour
scale for SC2. Contours are 6 for SD1 and 18 for SD2.

Table B.1. Modelled integrated intensities and resulting abundances.

Observed Best fit H2 C18O C18O
Position I(1−0) I(2−1) I(3−2) I(1−0) I(2−1) I(3−2) column column fractional

(K km s−1) (K km s−1) density density abundance
(1023 cm−2) (1015 cm−2) (×10−8)

NA 9.15 10.65 6.94 9.23 10.42 7.28 1.60 15.4 9.6
NB 7.47 8.87 4.76 7.44 8.15 5.20 1.39 11.9 8.6
NC 8.14 10.35 4.90 8.13 9.29 5.57 1.00 11.9 12.0
ND 7.90 10.09 4.82 7.99 8.88 6.20 4.01 13.5 3.4
SA1 4.69 10.57 8.46 4.75 9.84 9.01 1.84 6.4 5.8
SA2 2.42 1.98 0.50 2.50 2.02 0.64 4.2
SB1 4.63 6.66 4.20 4.74 6.72 4.37 2.46 6.0 4.2
SB2 3.32 5.99 4.31 3.35 5.73 4.50 4.4
SC1 4.61 7.37 3.87 4.72 6.82 4.37 3.87 5.8 1.9
SC2 1.17 2.58 1.45 1.21 2.23 1.71 1.4
SD1 4.81 7.44 7.31 5.01 8.53 7.34 4.82 7.3 2.7
SD2 4.41 8.66 4.66 4.45 7.42 5.74 5.8

Positions of the NW sub-cluster are identified as starting with N, while the south positions start with S. For the positions in the SE, the labels 1 and
2 identify the lower (LVC) and higher velocity (HVC) components respectively. Where there are two velocity component lines, the C18O fractional
abundance was calculated using the total column density of C18O, summing both components

Appendix B: C18O intensities
and abundances

Table B.1 presents the best fit integrated intensities from the non-
LTE (RADEX) modelling (Appendix A) , together with the ob-
served values, and the implied C18O abundances.

For positions ND, SB, SC and SD, the H2 column densities
derived from the dust and used to estimate the abundance
of C18O were calculated using a dust temperature of 10 K.
Assuming a temperature of 15 K for all 4 positions (ND, SB, SC
and SD) would reduce the H2 column densities by a factor of

2.1, representing an equivalent rise of the fractal abundance of
C18O by the same amount.

The derived C18O fractional abundance (which is averaged
along the line of sight) implies a depletion of C18O of between
a factor of 1.4 (for NC) and 4.3 (for SC), with an average of 2.5
compared to the abundance of 1.7×10−7 in dark clouds (Frerking
et al. 1982). Given that the ratio between C17O and C18O has
shown these two species to be optically thin, with an intensity
ratio of ∼3.5, a factor 2.5 depletion of C18O implies the same
depletion factor for C17O.
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