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Abstract
We introduce a simple model for electromagnetically induced transparency
in which all fields are treated quantum mechanically. We study a system of
three separated atoms at fixed positions in a one-dimensional multimode
optical cavity. The first atom serves as the source for a single spontaneously
emitted photon; the photon scatters from a three-level ‘�’-configuration
atom which interacts with an additional single-mode field coupling two of
the atomic levels; the third atom serves as a detector of the total transmitted
field. We find an analytical solution for the quantum dynamics. From the
quantum amplitude describing the excitation of the detector atom we extract
information that provides exact single-photon analogues to wave delays
predicted by semi-classical theories. We also find complementary
information in the expectation value of the electric field intensity operator.

Keywords: Electromagnetically induced transparency, group velocity,
phase velocity, quantized field, scattering

1. Introduction

Controlling the phase coherence in ensembles of multilevel
atoms has led to the observation of many striking
phenomena in the propagation of near-resonant light. These
phenomena include coherent population trapping, lasing
without inversion, electromagnetically induced transparency,
and anomalously slow and anomalously fast pulse velocities.
Resonant enhancement of the index of refraction without an
accompanying increase in absorption was proposed [1] and
observed [2, 3] in 1991, and drastic reductions in the group
velocity of pulses were discussed shortly thereafter [4]. Recent
experiments have taken the reduction of the speed of light to
extreme limits [5, 6] and at the other extreme lie observations
of seemingly superluminal light [7, 8]. An overview of recent
developments in the control of photons is presented in [9].
An earlier review of electromagnetically induced transparency

3 Current address: Department of Physics, University of California, Berkeley,
CA 94720-7300, USA.
4 Author to whom any correspondence should be addressed.

was presented by Harris [10], while Lukin et al present an
overview of phase coherence in general with an extensive list
of references [11]. Such effects are also discussed in recent
texts (see, for example [12]). In most previous work the
phenomenon of electromagnetically induced transparency and
the accompanying drastic slowing of the speed of light are
treated using semi-classical theory in which the atoms of the
medium are treated quantum mechanically and the fields are
treated classically. We use a model in which the entire system
is treated quantum mechanically, and study the propagation of
a field state containing a single photon. Although coherent
states of a single mode quantized field are often considered
as the ‘most classical’, the multimode single photon states
that we study exhibit striking parallels with classical fields.
The model we present is idealized, and does not correspond
to the conditions of a specific experiment. We present it in
an effort to provide interpretive clarity at the quantum level
of electromagnetically induced transparency and anomalously
slow light speeds.

We study a system of three separated atoms at fixed
positions in a one-dimensional multimode optical cavity. The
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Figure 1. Level scheme for simple electromagnetically induced
transparency. A strong field resonantly couples levels B and C, and
weak probe is near resonance with the transition between levels A
and C. The upper level C decays via spontaneous emission to the
ground state A; other damping mechanisms are assumed to be
negligible.

first atom serves as the source for a single spontaneously
emitted photon; the photon scatters from a three-level ‘�’-
configuration atom which interacts with an additional single-
mode field coupling two of the atomic levels; and the third
atom serves as a detector of the total transmitted field. In
the spirit of Feynman’s derivation of the classical index
of refraction from the interaction of a field with a single
oscillator [13], we infer the properties of a medium exhibiting
electromagnetically induced transparency from the interaction
of the spontaneously emitted quantum field with the single
quantized scattering atom. We find an analytical solution
for the quantum dynamics, including reradiation from the
scatterer, and from this we deduce quantum delays that
characterize the propagation of the field. These delays
are equivalent to those predicted by semi-classical theories.
In our quantum model all delays are clearly the result of
interfering amplitudes that reshape the temporal envelope of
the probability of detecting the transmitted photon. This
effect is most clearly illustrated in the graphs of detection
probability versus time displayed in section 5. This work is
an extension of the model we have used previously to study
quantum manifestations of classical wave delays induced by
scattering from simple two-level atoms [14]. We note that the
analytical results obtained in this paper may be verified using
straightforward numerical techniques like those used in [15–
18].

2. Review of semi-classical theory

Electromagnetically induced transparency can be observed
in the simple three-level atom illustrated in figure 1. A
strong ‘coupling’ laser with angular frequency ωc is tuned to
resonance with the transition between atomic levels B and
C, while a weak ‘probe’ laser with angular frequency ωp

excites the transition between levels A and C. In this paper
we consider the simplest case in which decay from levels C to
B is small enough to be neglected, and the only damping is due
to emission at a rate γ from level C to the ground state A. (In
the this paper all decay rates γ j refer to decay of probability
of finding the atom in the excited state.) We also assume that
there is no incoherent pumping driving population between the
levels of the atom.

In the limit of a weak probe the complex susceptibility is
given by [12]

χ =
(

N |d|2
h̄ε0

)
δ

ω2
R/4 − δ2 − iδγ /2

, (1)

where N is the density of the atoms, d is the dipole moment of
the transition between levels A and C, ωR is the Rabi frequency
of the coupling transition between levels B and C, and the
detuning of the probe laser frequency from resonance with the
transition between levels A and C is

δ = ωp − ωAC. (2)

The index of refraction and the absorption coefficient can be
calculated from the real and imaginary parts of the complex
susceptibility, respectively. When the probe field is resonant
with the transition between levels A and C, i.e. δ = 0, the
absorption goes to zero and the index of refraction is a rapidly
varying function of probe frequency.

For later comparison with the results of our quantum
model, we consider a classical monochromatic plane wave
of frequency ωp which is normally incident on a thin slab
containing atoms with the level structure illustrated in figure 1.
The plane of the slab is normal to the z axis, the thickness of
the slab is �z, and the density of the atoms is N . If the incident
field is Ei = E0 exp[−iω(t − z/c)], the transmitted field on
the far side of the slab is

Et = Ei exp

(
i
ωpχ�z

2c

)
, (3)

and for weak scattering the transmitted field is approximately

Et � Ei

[
1 + i f

δγ /2

ω2
R/4 − δ2 − iδγ /2

]
, (4)

where we have introduced the small dimensionless parameter
f = N�z|d|2ωp/(h̄ε0cγ ) characterizing the magnitude of the
scattering.

The dispersion in the response of the atoms in this model
leads to delays of pulses traversing such a slab. The delay in
the arrival of the peak of a modulation envelope of a quasi-
monochromatic pulse is determined by the group velocity
vg = dω/dk = c/(n + ω dn

dω
), and is given by

�tg = �z

vg
− �z

c
= �z

c

(
n − 1 + ω

dn

dω

)
. (5)

For detunings such that δ � ωAC the group delay is

�tg = 2 f γ
(ω2

R + 4δ2)[(ω2
R − 4δ2)2 − 4γ 2δ2]

[(ω2
R − 4δ2)2 + 4γ 2δ2]2

. (6)

The functional form of the delay when ωR = γ /2 is illustrated
in figure 2. When the probe field is resonant with the transition
between levels A and C the group velocity can be extremely
small, and this is manifested in the large positive group delay
at δ = 0 in figure 2. The central peak in figure 2 becomes taller
and narrower as the strength of the coupling field is reduced.
We note that for some values of the detuning δ the group delay
is negative, which corresponds to group velocities greater than
the vacuum speed of light, c. Such ‘superluminal’ velocities
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Figure 2. Group delay for a classical pulse in a medium with
susceptibility given by equation (1). The strength of the coupling
field is such that ωR = γ/2.

do not violate causality, and are an effect of pulse reshaping
and intensity redistribution by the dispersive medium. Similar
reshaping effects and group velocities greater than c occur near
simple two-level resonances in both classical and quantum
theories.

For pulses that are insufficiently monochromatic the
simple concepts of phase and group velocity are inadequate
for characterizing all of the effects of pulse reshaping as the
field propagates. Several other velocities and delays have
been developed (see, for example, [19, 20]) and in this paper
we focus on a delay determined by the ‘temporal centre-of-
gravity’ of the field intensity of a pulse at a fixed position z
‘downstream’ from the slab containing the atoms comprising
the medium, i.e.

�tE2 =
(∫

tE(z, t)2 dt∫
E(z, t)2 dt

)
after medium

−
(∫

tE(z, t)2 dt∫
E(z, t)2 dt

)
vacuum

.

(7)
This is closely related to concepts used to define the
centrovelocity in [19]. We have investigated this delay
in classical and quantum mechanical models of scattering
from simple two-level atoms in a previous paper [14]. For
quasi-monochromatic pulses far from resonance this delay is
equivalent to the group delay, but in general it is necessary to
calculate explicitly the field E in order to determine �tE2 . As
in our previous study [14], the ‘temporal-centre-of-gravity’
delay provides a framework for an unambiguous and causal
interpretation of delays in both classical and quantum models.
For the specific pulses with Lorentzian spectrums under
consideration, we will show that the ‘temporal-centre-gravity’
delay is identical to twice the group delay.

3. Quantum mechanical model

The quantum mechanical system under consideration is
illustrated in figure 3, and consists of three atoms at fixed
positions in a multimode one-dimensional optical cavity that
extends from z = 0 to L . This multimode cavity is oriented
horizontally in the schematic representation of figure 3. The
middle atom has an additional interaction with a single-mode

Scatterer
Source Detector

L /4 L /2 3L /4 Lz = 0

Figure 3. Quantum mechanical model consisting of three atoms at
fixed positions. All three atoms interact with the radiation in the
probe field in the multimode cavity (represented horizontally) and
the middle atom also interacts with the single mode coupling field
(represented vertically).

field contained in the vertical cavity. The field in the multimode
(horizontal) cavity plays the role of the probe field, and the field
in the single mode (vertical) cavity represents the coupling
field. The probe cavity is assumed to be large in the sense
that the length L is very much greater than the wavelength of
the light emitted by the atoms. (The finite optical cavities do
not contribute to the physical phenomena under investigation;
they simply provide a convenient quantization volume for the
field modes used in our calculation.) In the remainder of this
section we will discuss the details of our model and the standard
quantum optical Hamiltonian we use. We also present the
analytical solution for the time dependence of the system.

The atom on the left (atom 1) is a two-level atom which
is initially in the excited state, and will be the source of the
probe field. The middle atom (atom 2) which will scatter
the radiation emitted by the source is a three-level atom with
the ‘�’-configuration of figure 1, and the energy difference
between levels A and C is close to that of the level separation
of atom 1. (The highest level of all three atoms will be
labelled as C.) Levels B and C of atom 2 will interact with
the single-mode coupling field which is assumed to be exactly
on resonance. The coupling field will initially be in a state with
a well defined number of photons such that the Rabi frequency
of the transition between levels B and C is appropriate for
the observation of electromagnetically induced transparency.
The two-level atom on the right (atom 3) will serve as a
detector. The detector atom is assumed to have the same
resonant frequency as the source atom. The relative energy
levels of all three atoms are illustrated in figure 4.

No assumption is made about the relative strength of the
three atoms’ coupling to the field, so that atoms have distinct
decay rates. Although we find a solution for the dynamics for
any set of decay rates, we focus our attention in this paper on
cases in which the decay rate of atom 1 is very much smaller
than the decay rate of atom 2. This condition insures that
the spectrum of the radiation emitted by atom 1 will be very
much narrower than the line-width of the scattering atom, and
this allows us to compare our results from the quantum case
with those of the semi-classical model which assumes that the
sample is driven by a monochromatic wave. We also focus on
cases when the decay rate of the detector atom (atom 3) is very
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Figure 4. Level scheme of the source, scattering, and detector
atoms. The source and detector are two-level atoms with identical
transition frequencies. The scattering atom is a three-level atom in
the ‘�’ configuration. The transition frequency of the source and
detector are detuned from the A–C transition of the scattering atom
by an amount δ.

much greater than any other dynamical rates in the problem.
In this limit the excitation of atom 3 will closely follow the
field that drives it. For simplicity we also assume that the
spontaneous decay rate from level C to level B (for atom 2) is
negligible. This is, of course, an idealization; in the modelling
of real experiments it is necessary to account for such decays.
As mentioned in the introduction, our goal in this paper is
interpretive clarity in the context of a fully quantized model,
and assuming that this decay is negligible makes our quantum
analysis tractable. It is straightforward to include this decay
in a semi-classical model like that presented in [12].

The zero-field resonance frequencies of the A–C
transitions of the atoms are labelled ω

(at)
j , where j = 1, 2,

or 3, and the positions of the atoms will be labelled z j . In the
remainder of the paper we will assume that the atoms are at
positions z1 = L/4, z2 = L/2, and z3 = 3L/4, as illustrated
in figure 3, although our results for delay times do not depend
on the exact positions. The standing wave field modes of the
probe field cavity are separated in angular frequency by the
fundamental frequency

� = π
c

L
. (8)

This mode spacing may be small enough that many modes fall
within the natural line-width of the atoms.

For convenience we assume that the frequency of one of
the modes corresponds exactly to the resonance frequency of
atom 1, the emitting atom, and that the length of the cavity
is such that it contains an even number of wavelengths of
this mode. We label the frequency of this mode ω0 = m0�,
where m0 is an integer divisible by 4. (This assumption affects
the details of some of our calculations, but not our results
concerning delay times.) The other mode frequencies will
be enumerated from this mode so that

ωm = (m0 + m)�, (9)

where m = 0,±1,±2, . . ..
As in the semi-classical case we wish to study the effects

of the detuning of the source field on the scattering of the
radiation. We use the same symbol δ as in the semi-classical
case to represent the detuning of the field, but in the quantum

case the detuning is directly tied to the properties of the source
and scattering atoms

δ = ω
(at)
1 − ω

(at)
2 . (10)

Owing to the fact that the detector atom is assumed to have
the same resonance frequency as the source atom we have
ω

(at)
1 = ω

(at)
3 .

We use as basis states the eigenstates of the atomic plus
free-field Hamiltonian

Ĥ0 = Ĥatoms + Ĥfield

= Ĥatoms + Ĥprobe + Ĥcoupling

= h̄ω
(at)
1 |C1〉〈C1| + h̄ω

(at)
2 |C2〉〈C2| + h̄(ω

(at)
2 − ωc)|B2〉〈B2|

+ h̄ω
(at)
3 |C3〉〈C3| +

∑
m

h̄ωma†
mam + h̄ωca†

c ac, (11)

where am and a†
m are the lowering and raising operators for the

mth mode of the probe field, and ac and a†
c act similarly on

the single mode of the coupling field. (We have re-zeroed the
energy scale to remove zero-point energy of the field modes.)
The basis states will be denoted as follows:

• |C, A, A; 0, N〉—Atom 1 excited, atoms 2 and 3 in ground
state A, no photons in the probe field, N photons in the
coupling mode;

• |A, C, A; 0, N〉—Atom 2 in state C, atoms 1 and 3 in
ground state A, no photons in the probe field, N photons
in the coupling mode;

• |A, A, C; 0, N〉—Atom 3 excited, atoms 1 and 2 in ground
state A, no photons in the probe field, N photons in the
coupling mode;

• |A, A, A; 1m , N〉—All atoms in ground state A, one
photon in the probe field mode with frequency (m0 +m)�,
N photons in the coupling mode;

• |A, B, A; 0, N + 1〉—Atom 2 in state B, atoms 1 and 3 in
ground state A, N + 1 photons in the coupling field.

We use the standard electric-dipole and rotating-wave
approximations in the interaction Hamiltonian [21] to give

Ĥint =
3∑

j=1

∑
m

h̄(g jma†
m |A j〉〈C j | + g∗

jmam |C j〉〈A j |)

+ h̄(gca†
c |B2〉〈C2| + g∗

c ac|C2〉〈B2|), (12)

where the strength of the coupling of the j th atom to the mth
mode of the probe field is characterized by the constant g jm .
The Rabi frequency ωR of the transition between levels B and
C is determined by the number of photons in the coupling mode
and the coupling constant gc as follows:

ωR = 2gc

√
N + 1. (13)

For convenience we assume that ωR is real.
We assume that the frequencies of all atomic transitions

are very much greater than the fundamental frequency of the
cavity, i.e. ω

(at)
j � �, and similarly for ωc. In this limit we

can make the approximation that all modes that influence the
dynamics of the system are near the atomic resonances, and
the atom–field coupling constants are given by

g jm = 	 j sin[(m0 + m)πz j/L]. (14)
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In this equation 	 j is a constant given by

	 j = d j

(
ω

(at)
j

2h̄ε0V

)1/2

, (15)

where d j is the dipole matrix element between levels A and C
of atom j , and V is the effective volume of the cavity.

We assume that the system begins in the state with the
source atom excited, and the coupling field in a well defined
number state, i.e.

|ψ(0)〉 = |C, A, A; 0, N〉, (16)

and write the time-dependent state of the system as the linear
combination

|ψ(t)〉 = c1(t)|C, A, A; 0, N〉 + c2(t)|A, C, A; 0, N〉
+ c3(t)|A, A, C; 0, N〉 + d(t)|A, B, A; 0, N + 1〉
+

∑
m

bm(t)|A, A, A; 1m , N〉. (17)

(In real experiments it is difficult to prepare a state with a well
defined photon number like the initial state of the coupling field
that we have assumed; more realistic photon states are built as
linear combinations of such Fock states. The evolution of each
term in such a linear combination will be given by the solution
derived in this paper, with the value of N appropriate for the
term. If the spread in the values of the Rabi frequency of the
A–B transition determined by the range of photon numbers
is small compared to the frequency itself, the results will not
differ appreciably from those given for an initial state of the
form of equation (16).)

Choosing the zero of the energy scale at the level of
(uncoupled) state |C, A, A; 0, N〉, the Schrödinger equation
yields the following set of coupled differential equations:

ċ1 = −i
∑

m

g1mbm, (18)

ċ2 = −i

(∑
m

g2mbm + ωRd/2 − δc2

)
, (19)

ċ3 = −i
∑

m

g3mbm, (20)

ḋ = −i(ωRc2/2 − δd), (21)

ḃm = −i

(∑
j

g∗
jmc j + m�bm

)
. (22)

We solve this set of equations with the Laplace transform
technique used by Stey and Gibberd [22]. Laplace transforms
have also been used to solve the Schrödinger equation
in similar problems with two interacting atoms in three
dimensions [23, 24] and in our own recent work on scattering
from two-level atoms [14]. Because the Laplace transform
technique is not new, and because we would like to focus
on analogies with the fields in the semi-classical model and
physical interpretation, we leave the details of our solution to
the appendix, and simply quote our results here.

The general features of the solution giving the time
dependencies of the atomic excitation amplitudes are
illustrated in figure 5. The initially excited atom decays
exponentially until t = 0.5L/c, the time at which scattered and

Figure 5. Magnitude of the amplitudes for the atoms to be in the
excited state, starting from the state |ψ(0)〉 = |C, A, A; 0, N〉. The
decay rates of the atoms are γ1 = 4, γ2 = 64, and γ3 = 1024 in the
units of the figure; the Rabi frequency of the B–C transition of atom
2 is ωR = γ2/2 = 32, and δ = 0.

reflected radiation first returns to the atom. The amplitudes to
find the other atoms excited are identically zero until radiation
first reaches them: the scattering atom first becomes excited
at t = 0.25L/c and the detector atom is first excited at
t = 0.5L/c. The three decay constants which characterize
the spontaneous emission rates of level C in each of the atoms
emerge naturally in terms of the parameters of the Hamiltonian
as

γ j = π |	 j |2
�

= |	 j |2 L

c
. (23)

The causal nature of the dynamics is evident in that all
disturbances are propagated at the speed of light c via the
quantum field. The abrupt changes in the complex amplitudes
at intervals of 0.5L/c are a manifestation of the finite speed of
light and the atomic spacing of 0.25L .
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The abrupt changes appear in our analytic solution for
the complex amplitudes c j (t), d(t), and bm(t) as sums of
terms with step functions that ‘turn on’ at successively later
intervals of 0.5L/c. In the following formulae giving these
amplitudes we truncate the expressions so that only the first
excitations of atoms 2 and 3 are included. We also note that the
following equations are specific in some details to the atomic
positions zi used in this paper. The positions of the atoms
enter via the coupling constants g jm , and changes in positions
will result in changes in ‘turn-on’ times and relative phases of
terms. The initial atomic decay rates given by equation (23)
are not affected by the positions of the atoms; the effects of
position dependence in the coupling constants compensate to
keep the total decay rates independent of position. Our large-
cavity limit ω � �c means the atoms have time to decay
at their free-space rates before interruption by reflected and
scattered radiation. (Examples of the relationship between
interrupted free-space decay and modified decay rates are given
in [25].) The conclusions of this paper concerning delay times
are unaffected by any details of position dependence.

The explicit time dependence of the system is given by
the following set of amplitudes, in which we use the labels Fi

as a shorthand for complicated coefficients that are functions
of γi , δ, ωR, and (in the case of bm), m, and in which the time
is scaled in units of L/c:

c1(t) = exp

(
−γ1

2
t

)
+ �

(
t − 1

2

)(
exp

[
−γ1

2

(
t − 1

2

)]

× [F1 + (t − 1
2 )F2] + exp

{[
−

(
γ2 −

√
γ 2

2 − 4ω2
R

)/
4

+ iδ
]
(t − 1

2 )
}
F3 + exp

{[
−

(
γ2 +

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
× (t − 1

2 )
}
F4

)
+ · · · , (24)

c2(t) = �

(
t − 1

4

)(
exp

[
−γ1

2

(
t − 1

4

)]
F5

+ exp
{[

−
(
γ2 −

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t − 1

4 )
}
F6

+ exp
{[

−
(
γ2 +

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t− 1

4 )
}
F7

)
+ · · · ,

(25)

c3(t) = �

(
t − 1

2

)(
exp

[
−γ1

2

(
t − 1

2

)]
F8

+ exp
{[

−
(
γ2 −

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t − 1

2 )
}
F9

+ exp
{[

−
(
γ2 +

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t − 1

2 )
}
F10

+ exp

[
−γ3

2

(
t − 1

2

)]
F11

)
+ · · · ,

(26)

d(t) = �

(
t − 1

4

)(
exp

[
−γ1

2

(
t − 1

4

)]
F12

+ exp
{[

−
(
γ2 −

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t − 1

4 )
}
F13

+ exp
{[

−
(
γ2+

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t− 1

4 )
}
F14

)
+ · · · ,

(27)

bm(t) =
[

exp

(
−γ1

2
t

)
− exp(−imπ t)

]
g1mF15

+ �

(
t − 1

4

)
g2m

(
exp

[
−γ1

2

(
t − 1

4

)]
F16

+ exp[−imπ(t − 1
4 )]F17

+ exp
{[

−
(
γ2 −

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t − 1

4 )
}
F18

+ exp
{[

−
(
γ2 +

√
γ 2

2 − 4ω2
R

)/
4 + iδ

]
(t− 1

4 )
}
F19

)
+ · · · .

(28)

Complete expressions for the factors Fi are available from the
authors.

Four rates are manifest in the exponential factors in these
these equations: the exponential decay rate of the source
atom γ1, which we will assume to be small, the exponential
decay rate of the detector atom γ3, which we will assume to
be large, and two decay rates associated with the scattering

atom, 2γ ′
2 ≡ γ2 +

√
γ 2

2 − 4ω2
R and 2γ ′′

2 ≡ γ2 −
√

γ 2
2 − 4ω2

R.
When the coupling field strength is small, the last of these rates
approaches zero. This potential for slow reradiation is essential
for the existence of the reduced velocities which characterize
media with electromagnetically induced transparency. The
resonant behaviour which determines the relative contributions
of reradiation at the various rates is contained in the coefficients
Fi .

In the following sections we will focus on two quantities:
c3(t), the amplitude to find the detector atom excited, and 〈Ê2〉
the expectation value of the square of the electric field operator,
which is proportional to the field intensity. (The expectation
value of the field operator itself is zero for any state with the
form of equation (17).) In our investigation of c3(t) we will
consider only the displayed term in equation (26) describing
the initial excitation of the detector atom. Similarly, we will
investigate 〈Ê2〉 in regions to the right of the scattering atom,
and at times that exclude multiple scattering effects.

It is useful to rewrite c3(t) as the sum of two pieces: the
amplitude c0

3(t) for atom 3 to be excited in the absence of the
scattering atom (or, equivalently, when γ2 = 0), and cs

3(t), the
amplitude that is attributable to scattering. The total amplitude
is thus

c3(t) ≡ c0
3(t) + cs

3(t). (29)

Setting γ2 = 0 in equation (26) gives

c0
3(t) = �

(
t − 1

2

) √
γ1γ3

γ1 − γ3

{
exp

[
−γ1

2

(
t − 1

2

)]

− exp
[
−γ3

2

(
t − 1

2

)]}
, (30)

and subtracting this from equation (26) gives

cs
3(t) = �

(
t − 1

2

){
exp

[
−γ1

2

(
t − 1

2

)]
F20

+ exp

[
−

(
γ ′′

2

2
+ iδ

)(
t − 1

2

)]
F21 + exp

[
−

(
γ ′

2

2
+ iδ

)

×
(

t − 1

2

)]
F22 + exp

[
−γ3

2

(
t − 1

2

)]
F23

}
, (31)

where
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F20 =
√

γ1γ3

(γ1 − γ3)

γ2(γ1 + i2δ)

γ 2
1 − γ1γ2 − 4δ2 + ω2

R + i2δ(2γ1 − γ2)
,

(32)

F21 =
(

γ1γ3

γ 2
2 − 4ω2

R

)1/2
γ2γ

′′
2

(γ1 − γ ′′
2 + i2δ)(γ3 − γ ′′

2 + i2δ)
, (33)

F22 =
(

γ1γ3

γ 2
2 − 4ω2

R

)1/2
γ2γ

′
2(

γ1 − γ ′
2 + i2δ

)(
γ3 − γ ′

2 + i2δ

) ,

(34)

F23 =
√

γ1γ3

(γ1 − γ3)

γ2(γ3 + i2δ)

γ 2
3 − γ2γ3 − 4δ2 + ω2

R + i2δ(2γ3 − γ2)
.

(35)

As an alternative to finding the time dependence of the ex-
citation amplitude for the detector atom, we can characterize
the transmitted field itself without recourse to the details of the
detector. Standard photodetection theory [12] suggests cal-
culation of the expectation value 〈Ê (−)(z, t)Ê (+)(z, t)〉, where
Ê (+)(z, t) and Ê (−)(z, t) correspond to the decomposition of
the interaction representation field operator into positive and
negative frequency parts. This is equivalent to the calcula-
tion of the expectation value of the normally ordered intensity
operator 〈: Ê2 :〉.

Using the electric field operator in the form given in [21],
we write the expectation value of the square of the field as

〈: Ê2 :〉 = 〈ψ(t)| :

{∑
m

√
h̄ωm

ε0V
(am + a†

m)

× sin

[
(m0 + m)

πz

L

]}2

: |ψ(t)〉. (36)

In the limit considered in this paper we can replace
the frequencies ωm under the radical with the constant
ω

(at)
1 . After expanding the state vector as in equation (17),

normally ordering the operators, and evaluating the sums, the
expectation value can be written in terms of the amplitudes
bm(t) to find the photon in the various cavity modes

〈: Ê2 :〉 =
(

2h̄ω
(at)
1

ε0V

)∣∣∣∣∑
m

bm(t) sin

[
(m0 + m)

πz

L

]∣∣∣∣
2

. (37)

Evaluation of this expression gives a space- and time-
dependent representation of the localization of the energy of
the photon [17, 18].

The expression for 〈: Ê2 :〉 in equation (37) is the square
of a complex number that is analogous to the complex analytic
signal describing the classical field. We label this quantity Eqm,
i.e.

Eqm =
(

2h̄ω
(at)
1

ε0V

)1/2 ∑
m

bm(t) sin

[
(m0 + m)

πz

L

]
. (38)

The overall phase of this quantity is clearly arbitrary; in what
follows we retain the phase that comes from a direct evaluation
of this equation. As we have previously noted [14] this quantity
Eqm is very closely related to what has been identified as ‘the
‘electric field’ associated with [a] single photon state’ by Scully
and Zubairy [12]. For further discussion of the relationship
see [14].

For ease of comparison with previous results for the
detector atom, we investigate the field at the fixed position
z = 3L/4. With no scattering atom present we find [14]

E0
qm = −i�

(
t − 1

2

)(
h̄ω

(at)
1 γ1π

2πε0V �

)1/2

exp

[
−γ1

2

(
t − 1

2

)]
.

(39)
The energy density passing the point z = 3L/4 exhibits
an abrupt turn-on (because of the initial conditions we have
chosen) followed by exponential decay [12, 14, 17, 18]. With
a three-level scattering atom present at z = L/2 we find

Eqm = −i�

(
t − 1

2

)(
h̄ω

(at)
1 γ1π

2ε0V �

)1/2{
exp

[
−γ1

2

(
t − 1

2

)]

+
γ2(γ1 + i2δ) exp

[− γ1

2

(
t − 1

2

)]
γ 2

1 − γ1γ2 − 4δ2 + ω2
R + i2δ(2γ1 − γ2)

+
γ2γ

′′
2 exp

[−( γ ′′
2
2 + iδ

)(
t − 1

2

)]
√

γ 2
2 − 4ω2

R(γ1 − γ ′′
2 + i2δ)

+
γ2γ

′
2 exp

[−( γ ′
2

2 + iδ
)(

t − 1
2

)]
√

γ 2
2 − 4ω2

R

(
γ1 − γ ′

2 + i2δ
)

}
. (40)

Using only the first term in curly brackets leads to the previous
result with no scattering atom present. The steady state
scattering is obtained by including the second term in curly
brackets. Probability associated with this term decays at the
slow rate γ1 reflecting the envelope of the incident radiation.
We claimed previously that for large γ3 the detector atom
response reflects the field incident upon it, and comparison
of equation (31), which gives the probability amplitude due to
scattering for the detector atom, with equation (40), justifies
this claim. In the limit γ3 � γ2, γ1 the factors F20 through F23

that arise in equation (31) are proportional to the coefficients in
front of the corresponding exponential terms in equation (40).

4. Comparison of semi-classical and quantum
mechanical scattering

In the semi-classical model the result of weak scattering of a
monochromatic field is contained in equation (4). In the limit
of narrow bandwidth probe (γ1 � γ2) and rapid detector atom
response (γ3 � γ1, γ2) our quantum amplitude for the detector
atom to be excited by the scattered field is approximated by
the first term of equation (31),

cs
3(t) � −�

(
t − 1

2

)
exp

[
−γ1

2

(
t − 1

2

)]

×
√

γ1

γ3

iδγ2/2

ω2
R/4 − δ2 − iδγ2/2

� c0
3(t)

iδγ2/2

ω2
R/4 − δ2 − iδγ2/2

. (41)

This has exactly the same functional form as the term due to
scattering in the formula for the classical field, equation (4).
In the classical formula the dimensionless factor f =
N�z|d|2ω/(h̄ε0cγ ) is assumed to be small. In our quantum
model the magnitude of the scattering is determined by 	2 (or
equivalently γ2), which characterizes the coupling of atom 2
to the probe field. In our one-dimensional model the coupling
to the incident field and the decay rate of atom 2 are both
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completely determined by the single parameter 	2, which
means that it is not possible to make the effect of the scattering
small without simultaneously making the line-width of atom 2
very narrow. In a fully three-dimensional model the decay rate
of atom 2 would be the result of the atom’s coupling to many
more modes, and not just those containing the incident field.
This scattering into other modes would reduce the scattering
in the forward direction (the direction of the detector) from
the amount predicted in our simple model. If the forward
scattering is reduced by a factor f , then a more realistic
expression for the excitation of the detector atom is

c3(t) = c0
3(t) + f cs

3(t). (42)

We have used the same symbol f here that we used for the
dimensionless parameter which characterizes the magnitude of
classical scattering in order to emphasize the analogy between
the quantum superposition of equation (42) and the classical
field superposition of equation (4).

Returning to field quantities, the quantum pulse of
equation (39) has the classical analogue

E0
cl = �

(
t − 1

2

)
C exp

[
−

(
γ1

2
+ iω1

)(
t − 1

2

)]
, (43)

where C is a constant. If such classical pulses are incident on a
thin slab of material with thickness�z, density N , and classical
susceptibility χ given by equation (1), then the classical
transmitted field Ecl is identical in form to equation (40), except
that the terms due to scattering (i.e. those proportional to γ2)
have a magnitude characterized by the classical dimensionless
factor N�z|d|2ω/(h̄ε0cγ2). A derivation of this result is
included in an appendix.

5. Temporal-centre-of-gravity delay

The group velocity of a classical field has a clear interpretation
for quasi-monochromatic fields: it is the speed at which the
peak of the modulation envelope travels. Group delays refer to
the delay in the arrival of the peak of a pulse compared to the
time expected for propagation through a vacuum. The pulses
investigated in this paper have sharp leading edges, and this
lack of a smooth modulation envelope means that the results of
simple classical theory for quasi-monochromatic pulses should
not be expected to be a sufficient guide to full understanding.
In this section we will investigate ‘temporal-centre-of-gravity’
delays in several classical and quantum mechanical quantities.

The first delay we investigate is derived from c3(t), the
amplitude for the detector atom to be excited. As we have
argued previously, this amplitude reflects the strength of the
incident field in the limit that the response time of this atom is
very short compared with other timescales, i.e. γ3 � γ1, γ2.
The effect of the scattering on this amplitude is evident in
figure 6, in which |c3(t)|2, the probability for the detector atom
to be excited, is plotted for three values of the detuning δ, and
also for the case in which no scattering atoms are present.
For clarity in this figure we have only included the terms
corresponding to the initial ‘turn-on’ of the excitation; we have
not included effects due to reflection and multiple scattering.
(The results are plotted for the specific case in which ωR =
γ2/2.) For all detunings, c3(t) = 0 for all times earlier than

Figure 6. Probability for the detector atom to be excited as a
function of time for various values of the detuning δ. (All effects
due to multiple scattering and reflections have been suppressed.)
The effect of the ‘pulse reshaping’ is dependent on the detuning.
The temporal centre-of-gravity of the probability is shifted relative
to that in the case of no scattering from relatively late times in the
top graph to earlier times in the middle two graphs, and then back to
later times in the bottom graph. The decay rates of the atoms are
γ1 = 4, γ2 = 64, and γ3 = 1024 in the units of the figure; the Rabi
frequency of the B–C transition of atom 2 is ωR = γ2/2 = 32.

t = 0.5L/c, as is expected; all effects on the detector atom
occur at times that preserve causality. The qualitative shapes of
the detector response depend critically on the detuning δ. For
δ = 0 the steady-state absorption coefficient is zero, and this
is reflected in the fact that at large times there is little effect of
the scattering on the probability. At earlier times the effects of
transient oscillations are pronounced, and the detector response
as reflected in the shape of |c3(t)|2 is shifted toward later times
relative to the response with no scattering atom present. The
response shifts to earlier times as the detuning is increased, and
for values in the vicinity of |δ| = γ2/4 it occurs earlier than
the in the case of no scattering. This is the region in which
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negative values of the group delay occur, as is illustrated in
figure 2. The finite response time of the medium results in
large brief transmission of the leading edge of the pulse of the
field before the high attenuation of the steady state sets in. (A
similar effect occurs in resonant scattering from simple two-
level atoms [14].) At larger detuning values, such as the case
δ = γ2 illustrated in the bottom graph of figure 6, most of the
probability is again removed at early times, shifting the overall
response back to later times.

We quantify the ideas illustrated in figure 6 by identifying
an effective arrival time of the photon with the temporal centre-
of-gravity of the probability that the detector atom is excited,
i.e.

tarrival =
∫

t |c3(t)|2 dt∫ |c3(t)|2 dt
. (44)

The delay imposed by the medium is then just the difference in
the arrival times calculated with and without a scattering atom
present,

�tc3 =
∫

t |c3(t)|2 dt∫ |c3(t)|2 dt
−

∫
t |c0

3(t)|2 dt∫ |c0
3(t)|2 dt

. (45)

To explore the effect of weak scattering we rewrite c3(t)
in the form of equation (42), and assume that f � 1. To first
order in f our quantum mechanical delay becomes

�tc3 =
∫

t |c0
3(t) + f cs

3(t)|2 dt∫ |c0
3(t) + f cs

3(t)|2 dt
−

∫
t |c0

3(t)|2 dt∫ |c0
3(t)|2 dt

� 2 f

[∫
t Re

[
c0

3(t)c
s
3(t)

∗] dt∫ |c0
3(t)|2dt

−
∫

t |c0
3(t)|2 dt

∫
Re

[
c0

3(t)c
s
3(t)

∗] dt

(
∫ |c0

3(t)|2 dt)2

]
. (46)

It is straightforward (but involved) to evaluate the integrals
in equation (46) using the expressions for c0

3(t) and cs
3(t) from

equations (30) and (31). After taking the limit γ3 → ∞ and
then letting γ1 → 0 we arrive at the following expression for
the quantum time delay:

�tc3 = 4 f γ2
(ω2

R + 4δ2)[(ω2
R − 4δ2)2 − 4γ 2δ2]

[(ω2
R − 4δ2)2 + 4γ 2δ2]2

. (47)

Comparing this to equation (6) shows that the ‘temporal-
centre-of-gravity’ delay time for this specific pulse is identical
in functional form to the classical group delay given in the
equation. The magnitude of the temporal-centre-of-gravity
delay is, however, twice that given by the group delay. (The
temporal-centre-of-gravity delay for classical pulses with the
form given in equation (43) is also twice as large as the
group delay.) The difference in the classical group delay and
the temporal-centre-of-mass delay should not be surprising,
because the pulses studied in this paper do not satisfy the quasi-
monochromatic condition.

The delay in the arrival time that we have defined is the
result of the reshaping of the ‘pulse’ of excitation of the detector
atom. The effect of scattering in the region of resonance
is effectively to redistribute (in time) the probability that the
detector atom will be excited. The scattering atom can rapidly
absorb energy from the probe field, and the coupling field
creates a state of the system which can then return energy

to the probe field at a rate which can be adjusted, via the
Rabi frequency ωR, to be arbitrarily slow. Although we have
not demonstrated it explicitly in this work, we are confident
that delays in the quasi-monochromatic quantum pulses with
smooth envelopes can be explained in the same manner.

As Ecl, Eqm, and c3(t) all have the same functional form
(in the large γ3 limit), it is easy to see that equivalent delays
can be derived from the classical field using equation (7), or
from the quantum field using the analogous equation

�t〈E2〉 =
(∫

t〈: Ê(z = 3L/4)2 :〉 dt∫ 〈: Ê(z = 3L/4)2 :〉 dt

)
with scatterer

−
(∫

t〈: Ê(z = 3L/4)2 :〉 dt∫ 〈: Ê(z = 3L/4)2 :〉 dt

)
no scatterer

. (48)

6. Conclusion

We have considered a fully quantized model of scattering
by three-level atoms which can exhibit electromagnetically
induced transparency. Our model is simple enough that we
are able to find an analytical solution describing the complete
dynamics of the system. Using this model we have investigated
the propagation of single spontaneously emitted photons
through a medium exhibiting electromagnetically induced
transparency, and have defined an effective time of arrival
at a detector atom. We have also calculated the expectation
value of the field intensity operator, and identified a quantum
analogue to the complex analytic signal describing the classical
field. These quantum mechanical quantities exhibit delays that
are clearly the result of pulse-reshaping effects. We have
compared our delays for quantized one-photon fields with
those calculated for classical fields using the index of refraction
determined from semi-classical theory, and find them to be in
agreement. As in our previous work [14] the effect of the fields
on the atoms and the atoms on the field have exact analogues
in the effects predicted by semi-classical theories. This work
provides a further example of how phase shifts imposed on
a classical field are manifested in a quantized version of the
theory.
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Appendix A. Solution using Laplace transforms

Taking the Laplace transform of the coupled differential
equations (18)–(22) gives the coupled algebraic equations

i(sc̃1(s) − 1) =
∑

m

g1mb̃m(s), (A.1)

(is + δ)c̃2(s) =
∑

m

g2mb̃m(s) + ωRd̃(s)/2, (A.2)

isc̃3(s) =
∑

m

g3mb̃m(s), (A.3)

isd̃(s) = ωRc̃2(s)/2 − δd̃(s), (A.4)
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isb̃m(s) =
∑

j

g∗
jmc̃ j (s) + m�b̃m(s). (A.5)

We solve these algebraic equations for the quantities c̃ j (s),
d̃(s), and b̃m (s), and then perform an inverse Laplace transform
to recover the time dependence of c j(t), d(t), and bm(t). The
details of carrying out such calculations are quite involved, and
were completed with the aid of a computer algebra system5.
In this appendix we outline our approach and present some of
our intermediate results.

We begin by solving equation (A.4) for d̃(s) and (A.5)
for b̃m(s), and substitute the results in the first three equations,
giving

sc̃1 − 1 = −i�( f11c̃1 + f12c̃2 + f11c̃3), (A.6)

c̃2 = −i�( f12c̃1 + f22c̃2 + f23c̃3)

[
4(s − iδ)

4(s − iδ)2 + ω2
R

]
, (A.7)

sc̃3 = −i�( f13c̃1 + f23c̃2 + f33c̃3), (A.8)

in which we have defined the dimensionless sums

fln = 1

�2

∑
m

gln g∗
mn

is
�

− m
. (A.9)

In the limit in which the atomic resonance frequencies
are very much greater than the fundamental frequency of the
cavity, i.e. ω

(at)
j � �, these sums may be approximated by

extending the range for m from −∞ to +∞, in which case
the sums have relatively simple representations in terms of
trigonometric functions. An example of the explicit form of
such sums is given in the appendix of [14].

After solving equations (A.6)–(A.8) for the quantities
c̃ j(s) in terms of the sums f jm , we rewrite the hyperbolic
trigonometric functions resulting from the sums in terms of
exponential functions, and expand the resulting expressions in
powers of exp(−s/2) or exp(−s/4). We also let c/L = 1
at this point in the calculation. The time dependence of
the system is recovered by a term-by-term inverse Laplace
transform of the expansion. The step function turn-on of
the resulting time dependence arises because of the factors
exp(−ns/4) in the expansion. The lowest order terms in our
expansions of the Laplace transforms are given here

c̃1(s) = 2

2s + γ1

+
2 exp(−s/2)γ1[4s2 + 4sγ2 − 4δ2 + ω2

R − 4iδ(2s + γ2)]

(2s + γ1)2[4s2 + 2s(γ2 − i4δ) − i2γ2δ − 4δ2 + ω2
R]

+ · · · , (A.10)

c̃2(s)

= − 4 exp(−s/4)
√

γ1γ2(s − iδ)

(2s + γ1)[4s2 + 2sγ2 − 4δ2 + ω2
R − i2δ(4s + γ2)]

+ · · · , (A.11)

c̃3(s) =
− 2 exp(−s/2)

√
γ1γ3(4s2 − 4δ2 + ω2

R − i8sδ)

(2s + γ1)(2s + γ3)[4s2 + 2sγ2 − 4δ2 + ω2
R − i2δ(4s + γ2)]

+ · · · , (A.12)

5 Mathematica notebooks used to perform the calculations are available from
the authors.

d̃(s) = i2 exp(−s/4)
√

γ1γ2ωR

(2s + γ1)[4s2 + 2sγ2 − 4δ2 + ω2
R − i2δ(4s + γ2)]

+ · · · , (A.13)

b̃m(s) = − i2g1m

(s + imπ)(2s + γ1)

+
i4 exp(−s/4)

√
γ1γ2(s − iδ)g2m

(s + imπ)(2s + γ1)[4s2 + 2sγ2 − 4δ2 + ω2
R − i2δ(4s + γ2)]

+ · · · . (A.14)

The inverse Laplace transform of these expressions gives
equations (24)–(28).

Appendix B. Classical scattering of exponential
pulses

A general pulse E(z, t) may be written in terms of its Fourier
transform as

E(z, t) = 1√
2π

∫ ∞

−∞
A(ω) exp{i[m(ω)z − ωt]} dω, (B.1)

where

A(ω) = C√
2π

∫ ∞

−∞
E(0, t) exp(iωt) dt. (B.2)

We consider an incident pulse like that of equation (43) which
for convenience we consider to arrive at the origin z = 0 at
t = 0. The Fourier transform of this pulse is

A(ω) = C√
2π

1

[γ1/2 − i(ω − ω1)]
. (B.3)

The effect of weak scattering on a Fourier component of a
plane wave is contained in equation (4), and we construct the
transmitted pulse to the right of the scattering region from the
original Fourier components appropriately modified according
to this equation. For weak scattering the dimensionless
parameter f = N�z|d|2ω/(h̄ε0cγ2) is small, and the
transmitted field is thus

Et(z, t) = 1√
2π

∫ ∞

−∞
A(ω) exp[iω(z/c − t)]

×
[

1 + i f
δγ2/2

ω2
R/4 − δ2 − iδγ2/2

]
dω

= C

2π

∫ ∞

−∞
exp[iω(z/c − t)]

[γ1/2 − i(ω − ω1)]

×
[

1 + i f
(ω − ω2)γ2/2

ω2
R/4 − (ω − ω2)2 − i(ω − ω2)γ2/2

]
dω

= Ei(z, t) +
iC f γ2

4π
×

∫ ∞

−∞
exp[iω(z/c − t)]

[γ1/2 − i(ω − ω1)]

×
[

(ω − ω2)

ω2
R/4 − (ω − ω2)2 − i(ω − ω2)γ2/2

]
dω. (B.4)

The integrand of this expression has three poles, all of which
lie in the lower half of the complex plane. For (z/c − t) > 0
the integration along the real axis is closed in the upper-half
plane, giving a result of zero. For (z/c − t) < 0 the contour
is closed in the lower half plane encircling the poles, giving
a result that is identical in form to the quantum mechanical
expression equation (40). (The factor exp(−iω1t) does not
appear in equation (40) because of the zero chosen for the
energy scale in the quantum calculations.)
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