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Two-slit Interference
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» Detection as particles.
» Distribution of detections as if waves.

» At low intensity, only one “particle” in apparatus at a time.



Interference

Dirac:

“Each photon then interferes only with itself.
Interference between two different photons never
occurs.”



Wave-Particle Duality

Photons: Waves or Particles?

Points to remember:
» Photons are massless.
> Inherently relativistic.

» Non-relativistic Schrodinger equation doesn't tell us anything
about photons; there isn't a wavefunction ¢ (x) for a photon.

» Light is described by a relativistic quantum field theory.



Wave-Particle Duality

Photons: Waves-orPartictes?

Points to remember:
» Photons are massless.
> Inherently relativistic.

» Non-relativistic Schrodinger equation doesn't tell us anything
about photons; there isn't a wavefunction ¢ (x) for a photon.

» Light is described by a relativistic quantum field theory.

Better questions:
» What can we measure?

» What are the differences between the predictions of a classical
field theory and the predictions of a quantum field theory?



Measurements

Intensity (Measured at single point)

Classical: Proportional to square of a measurable field strength
Quantum: Rate of detection of photons

Sensitivity to phase of fields (interference)?

Intensity Correlation (Measured at two points)

Classical: Proportional to product of squares of field strengths
Quantum: Rate of detections of two photons (joint probability)

Sensitivity to phase of fields (interference)?



Simple Model

» One-dimension.

» Single Polarization.
> Atoms

» Classical: Random-phase dipole oscillators
» Quantum: Two-level atoms



Classical Field Intensity at t = 0.15

Instantaneous

intensity (arb. units)

16

14
12

0.8 r
0.6 -
04 r
02 r

0.2

0.4 0.6
position

0.8




Classical Field Intensity at t = 0.15

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at ¢ = 0.15

25
- 27
2]
S
=]
g 15 r
8
2
s 1t
c
]
IS
- 0.5
O 1 1
0 0.2 0.4 0.6 0.8 1

position



Classical Field Intensity at t = 0.4

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at ¢ = 0.4
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Dramatic Pause



Intensity Correlation

Two detectors are better than one!

2.2 Wave—Particle Duality for Single Photons ®m 35
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Figure 2-5 Anticoincidence Experiment of Aspect and Co-workers.” The trigger
photon from the single-photon source is detected: this alerts the two detectors
PMT, and PMT, to expect a photon sometime during the brief “gate period” w.



Intensity Correlation

Classical Field:
I(z)I(x2) — (I(z1)1(22)) ¢,
Quantum Field:

(Prob. of Detecting Photon at 1) x(Prob. of Detecting Photon at x3)



Quantum Intensity Correlation Function
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Quantum Intensity Correlation Function

(E(21)E () E(w2) (1))

21 =05 t=04

2
§ 15¢
3
o
S 1 <
>
c
[]
£ 05

0 !

0 0.2 0.4 0.6 0.8 1

T2



Classical Intensity Correlation Function
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Interference in Classical Correlation (Hand Waving)
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Quantum Intensity Correlation Function
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Classical Intensity Correlation Function
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x1 = 0.69 t =0.45

0.7

0.6 r

05 r

0.4

0.3

0.2

Intensity Correlation

0.1 b

X2



Correlation: Quantum vs. Classical

Classical Field:

‘EL(O.69)+ER(O.69)|2 X ‘EL(.%'Q)—FER(ZCQ)‘Q

Quantum Field:

|AL(0.69)AR(z2) 4+ AL (z2) AR (0.69)]?
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Simplest Field Theory

Model Features:

» “Modes of the universe” (1-D); Quantized standing wave
modes

v

Multiple modes (201) — quasi-continuum

» Spontaneous emission via interaction with multiple empty
modes.

v

Schrodinger picture.
» — "“Localized” photons.



Simplest Field Theory

Basis States:

lee;0): both atoms excited, no photons
leg; 1k): atom 1 excited, atom 2 in g.s., 1 photon (mode k)
lge;1k): atom 1 in g.s. atom 2 excited, 1 photon (mode k)

lgg; 1k, 13r):  both atoms in g.s., 2 photons in distinct modes

lg g;2k): both atoms in g.s., 2 photons in same mode

Field Operators:

E(:U) = Z C,, (ak + aL) sin [(ko + k)ﬂ—;]
k



Simplest Field Theory

Initial State: [ (0)) = |ee; 0)
Time-Dependent State:

W) = alt)lee;0) + Y bin(t)leg; u) + > bar(t)lg e; 1)

k k

+ Y aw(t)lgg e i) +de )9 9; 2)
kk'<k

Hamiltonian: Two-level atoms, RWA, multimode.

H = H atoms T Hﬁeld + H interaction
— hw() (1)—|—hw(2 (2)+Zhwk aak—i—l
k 2

+ Z A <ng+)ak + Qla( )ak> sin [(ko + k)%]

+ zk:h (Qzai)ak + 920(—)%> sin [(kO + k)%] )



|diosyncratic (but simple) Dynamics Calculation

Project initial state onto energy eigenstates:

[¥(0)) = le,e0)
= Z\Eq><que,e;O>

Use known time evolution of eigenstates:
[9(1) = 3 € BB (Byle, 0).
q
Project onto state of interest, e.g.:
ek (1) = (9,93 Lg, Lir[1h(2))

= > e Filg g 1, 1y | Eg)(Egle, e;0)
q
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Conclusions

» Photons are strange (non-classical).

» Photons do retain some aspects of classical attributes (phase,
relative phase).

» The nature of photons can be probed via non-local
correlations.

» It's amplitudes that interfere, not fields.
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