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Abstract

I use Laplace transforms to find the complete analytical solution for the quantum dynamics of a

single two-level atom interacting with the quantized modes of an inhomogeneous one-dimensional

multimode optical cavity. Lapleace transforms were used by Stey and Gibberd [Physica, 60, 1-26

(1972)] on several model Hamiltonians, and this paper extends their techniques to cover decay in

a cavity that has regions with two different indexes of refraction.
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Simple fully quantized models of spontaneous emission and re-absorption in homogeneous

multimode cavities have been investigated numerically [1–3] and analytically [4]. In this

paper I show how the Laplace transform techniques introduced by Stey and Gibberd [5]

can be used to find analytical solutions to absorption and decay in a simple inhomogeneous

cavity.

The system I consider consists of a single two-level atom located at the center of an

optical cavity extending from z = −L/2 to z = L/2, as is illustrated in Fig. 1. The central

portion of the cavity in which the atom is located is empty, and the symmetric end regions

are filled with a linear dielectric material with a real index of refraction n. In this paper I

will consider the specific case of a cavity in which the high-index regions extend from −L/2

to −L/4 and L/4 to L/2.

I quantize the standing-wave modes of the inhomogeneous cavity and then use a stan-

dard Hamiltonian of quantum optics to determine the time-evolution of the atom-cavity

system. I make the standard rotating-wave and electric-dipole approximations, so that the

Hamiltonian is given by [6]

H = Hatom +Hfield +Hinteraction

= h̄ωegσ3 +
∑

j

h̄ωj

(

a†jaj +
1

2

)

+
∑

j

h̄
(

gjσ+aj + g∗jσ−a
†
j

)

, (1)

in which the sum extends over all modes of the cavity, and where σi are the elements of the

atomic pseudospin operators, aj and a†k are the lowering and raising operators for the jth

mode of the field with angular frequency ωj, and the gj gives the coupling between the atom

and the jth field mode. The frequencies ωj are the frequencies of the classical standing-wave

normal modes of the cavity. The spatial mode functions for the normal modes are sinusoidal,

z = −L/2

Atom

z = 0 z = L/2

FIG. 1: Two-level atom in an inhomogeneous cavity. The central (unshaded) portion of the cavity

is a vacuum, and the symmetric regions at the ends (shaded) have a real index n.
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with wavelengths appropriate to the indexes of the regions. Using the boundary conditions

of the cavity it is straightforward to show that the vacuum wave-vectors k for the even

normal modes are given by the roots of the equation

cos

(

kL

4

)

cos

(

nkL

4

)

−
1

n
sin

(

kL

4

)

sin

(

nkL

4

)

= 0. (2)

The coupling constants gj depend on the amplitude of the modes at the center of the

cavity. The odd modes all have nodes at the center of the cavity and therefore do not couple

to an atom at z = 0, and need not be considered. The even modes will all have maxima (or

minima) at the origin, and are normalized with constants Nj so that the expectation value

of the energy corresponding to a single photon in mode j is h̄ωj, giving

Nj =

[

2

2 + (n2 − 1) cos2 (kjL/4)

]1/2

. (3)

In the case in which the resonance frequency of the atoms ωeg is much greater than the

frequency of the fundamental mode of the cavity, the explicit form of the coupling constants

is

gj = ±d
(

ωeg
2h̄ε0V

)1/2

Nj

= ±ΩNj, (4)

where in the last line I have defined

Ω ≡ d
(

ωeg
2h̄ε0V

)1/2

, (5)

where d is the dipole matrix element of the atomic transition, and V is the effective volume

of the cavity.

I use as basis states the eigenstates of the atomic and free-field Hamiltonians, which I

label

• |e; 0〉: Atom in excited state, no photons in field,

• |g; 1j〉: Atom in ground state, one photon in field mode with frequency ωj.

In what follows the initial state of the system will be a state with an excited atom and no

photons, that is,

|ψ(0)〉 = |e; 0〉, (6)
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and the general state of the system is written as the linear combination

|ψ(t)〉 = c(t)|e; 0〉+
∑

j

bj(t)|g; 1j〉. (7)

The Schrödinger equation gives the following set of coupled differential equations for the

coefficients in Eq. (7):

iċ =
∑

j

gjbj (8)

iḃj = δjbj + g∗j c, (9)

where δj is the difference between the cavity mode frequency and the atomic resonance

frequency, i.e., δj = ωj − ωeg.

Taking the Laplace transform of these equations turns the coupled differential equations

into coupled algebraic equations for the transform variables c̃(s), b̃j(s):

i(sc̃(s)− 1) =
∑

j

b̃j(s)gj (10)

isb̃j(s) = δj b̃j(s) + g∗j c̃(s), (11)

and solving this set of algebraic equations for c̃ gives

c̃(s) =



s+ i
∑

j

|gj|
2

is− δj





−1

=



s+ i|Ω|2
∑

j

|Nj|
2

is− δj





−1

. (12)

To demonstrate the manner in which the sums in Eq. (12) can simplify, I consider the

specific case of n = 2, and take advantage of the periodicity that appears in Eqs. (2) and (3)

for this value of the index. The left-hand side of Eq. (2) is periodic in the variable kL, and

for any root k′L there will be other roots at kmL = k′L+4πn, where n is an integer. There

are three “families” of solutions to Eq. (2), all of them exhibiting this periodicity. One of

the families has roots given by

k(0)m L = 2πm, (13)

where m is an odd integer, and the other two families are located symmetrically with respect

to the first family, with roots given by

k(±)m L = 2πm±∆kL, (14)
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where again m is an odd integer, and ∆kL is the smallest non-zero positive root of

sin

(

∆kL

4

)

cos

(

∆kL

2

)

+
1

2
cos

(

∆kL

4

)

sin

(

∆kL

2

)

= 0. (15)

The normalization factor will be constant within each of the “families” because of the peri-

odicity of Eq. (3) in kL. The normalization constants for the “families” are

N (0) = 1 (16)

N (+) = N (−) =
(

1

2

)1/2

. (17)

If we assume that the atomic resonance frequency exactly matches one of the cavity modes

from the family with wave-vectors k = 2πm/L, and we specialize to the case of n = 2, then

the Laplace transform c̃(s) given by Eq. (12) becomes

c̃(s) =







s+ i|Ω|2





∑

j

1

is− j 4πc
L

+
1

2

∑

j

1

is− c∆k − j 4πc
L

+
1

2

∑

j

1

is+ c∆k − j 4πc
L











−1

=







s+ i
|Ω|2L

4πc





∑

j

1
L
4πc
is− j

+
1

2

∑

j

1
L
4πc

(is− c∆k)− j

+
1

2

∑

j

1
L
4πc

(is+ c∆k)− j











−1

. (18)

In the limit in which the atomic transition frequency is much greater than the fundamental

frequency of the cavity, the sums in Eq. (18) can be approximated by extending them to

include values of j from−∞ to +∞. This allows them to be written in terms of trigonometric

functions [7] as follows:

c̃(s) =

(

s+ i
|Ω|2L

4c

{

cot
[

πL

4πc
is
]

+ cot
[

πL

4πc
(is− c∆k)

]

+ cot
[

πL

4πc
(is+ c∆k)

]}

)−1

. (19)

I define the quantity

γ =
|Ω|2L

c
, (20)

and rewrite Eq. (19) in terms of exponentials. I then expand the result in powers of

exp[−sL/(4c)], giving

c̃(s) =
1

(s+ γ)
− exp[−sL/(2c)]

cos2 (∆kL/4)

(s+ γ)2
+ · · · (21)

Taking the inverse Laplace Transform of Eq. (21) term-by-term gives

c(t) = exp (−γt)−Θ
(

t−
L

2c

)

2 exp
[

−γ
(

t−
L

2c

)]

γ
(

t−
L

2c

)

cos2 (∆kL/4) + · · · (22)
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where Θ is the unit step function. The first term represents decay at the vacuum rate γ

[2, 4, 5]. The second term represents excitation due to the first reflection from the the high-

index regions at the ends of the cavity, and “turns-on” at the time expected for a round-trip

from the position of the atom to the interface with the high-index region and back. The

additional terms that are not included in Eq. (22) turn on at successive intervals of L/2c.

In an earlier work [8] I translated the results of reference [5] into the language of quantum

optics, and derived expressions for the excitation due to reflections in an empty cavity. The

second term in Eq. (22) is identical to the the analagous term for an empty cavity except

that the “turn-on” time is earlier (as expected), and the magnitude of the term is reduced

by the factor cos2 (∆kL/4). Equation (15) gives

cos2 (∆kL/4) =
1

3
, (23)

and a reduction by this factor is exactly what is expected from classical considerations. The

electric field reflection coefficient for the interface with the high-index regions is

R =
n− 1

n+ 1
−→

1

3
. (24)

A classical field reflected from an interface with the high-index region is one-third of that

reflected from a perfect mirror, and this leads to re-excitation of the atom (as expressed in

the quantum amplitude c(t)) that is exactly one-third of the excitation in an empty cavity.

I note that the phase of the second term in Eq. (22) has been set by the condition that

the atomic resonance exactly matches the frequency of one of the cavity modes with a wave-

vector k = 2πm/L, where m is an odd integer. This condition is equivalent to the statement

that the atomic resonance frequency is such that the round-trip distance from the atom

to the high-index interface and back is equal to an odd number of half-wavelengths of the

resonant light. Altering this condition corresponds to altering the phase of classical light

returning to the atom, and this manifests itself in the quantum case in phase of the term in

the complex quantum amplitude c(t) that corresponds to re-excitation by the reflected field.

The calculations outlined in this paper are specific to the details of the cavity we con-

sidered, and must be modified to fit other physical situations. It is in principle possible

to consider more complex dielectric structures, and it is also possible to consider cavities

with additional atoms. In practice it is much easier to use numerical techniques like those
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discussed in references [2, 3, 9] when more complicated atom-cavity systems are considered.
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