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I develop simple thermodynamic relations for a system of noninteracting classical particles confined
in an isotropic harmonic trap. The volume occupied by the particles in such a trap is not well
defined, and the pressure varies with position, indicating that the thermodynamic relations should be
expressed in terms of more appropriate variables. I use the effective spring constant of the trap as
a state variable and show that the conjugate state variable is proportional to the ensemble average
of the mean squared displacement of the particles from the center of the trap. Thermodynamic
relations are derived in terms of these variables, including the pressure and thermal equations of
state, the entropy, and the heat capacities. I also consider cyclic thermodynamic processes in a
harmonically confined gas. © 2010 American Association of Physics Teachers.
�DOI: 10.1119/1.3417868�
I. INTRODUCTION

The pressure equation of state for a gas of N noninteract-
ing particles in a rigid volume V is derived in almost every
text on thermodynamics and statistical mechanics, yielding
the familiar ideal gas law

PV = NkT , �1�

where P and T are the pressure and temperature of the gas
and k is Boltzmann’s constant. It is also standard textbook
material to derive expressions for the internal energy U, en-
tropy S, and the heat capacities CV and CP. The recent flurry
of experimental and theoretical work on cooled neutral at-
oms confined in external potentials has highlighted an impor-
tant system of weakly interacting particles that are confined
in a manner that does not conform to the conditions of the
usual introductory treatments of thermodynamics. The den-
sity and pressure vary with position within such traps, and
the volume of the gas is not well defined. It is instructive to
see how standard textbook statements of the first law of ther-
modynamics and the ideal gas law must be modified for this
example of a gas in an inhomogeneous potential. Although
much of the recent work on trapped atoms has been moti-
vated by interest in the ultracold regime in which quantum
statistics plays an important role, the focus of this paper is in
the realm of classical thermodynamics.

There are many examples of thermodynamics applied to
systems with inhomogeneous potentials, such as the atmo-
sphere. In the standard treatment of such systems,1–3 thermo-
dynamic variables such as temperature and pressure become
functions of position, and thermodynamic relations are con-
verted into differential equations. In this paper I show that
the atoms in a harmonic trap can be characterized by param-
eters that are not functions of position and therefore can be
treated analogously to the ideal gas in a rigid volume without
recourse to differential equations. The switch from the famil-
iar pressure and volume to new variables provides an inter-
esting exercise in which the meaning of familiar thermody-
namic relations must be reconsidered in a new context.

I consider a fixed number of atoms in an isotropic har-
monic confining potential of infinite extent. The restoring

force is given by
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Ftrap = − brr̂ , �2�

where r is the displacement of a particle from the minimum
of the trap and b is an effective spring constant. The state of
the familiar ideal gas can be specified by two of the three
variables P, V, and T. Similarly, the state of the trapped gas
can be specified by two variables, but they are chosen from a
set including the temperature, a variable characterizing the
strength of the confinement, and a variable characterizing the
spatial extent of the trapped gas. I show that the effective
spring constant of the trap and the mean squared displace-
ment of the particles from the minimum of the trap can serve
as state variables and develop simple thermodynamic rela-
tions in terms of these variables. These relations include ex-
pressions for the first law of thermodynamics, the pressure
equation of state, and the internal energy, entropy, and heat
capacities. I also consider cyclic thermodynamic processes
for harmonically confined gases. The main results are col-
lected in Table I.

II. FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics is an expression of the
work-energy theorem. For conventionally confined particles,
work is done on the system when external forces act on the
walls of the container to change its volume. If the forces act
reversibly, the first law can be expressed as

�U = Q − P�V . �3�

For a system of harmonically trapped particles, there is no
surface on which to apply external forces, and thus the term
−P�V expressing the reversible work done on the system
must be replaced. Reversible work can be done on the sys-
tem of atoms plus trap only by changing the effective spring
constant. Hence, I use b as a thermodynamic variable char-
acterizing the confinement of the particles, and the expres-
sion for the mechanical work on the gas must have the form
Adb, where A is a quantity with dimensions of area that
characterizes the physical size of the trapped gas. �The ex-
pression for A will be determined in the following.� With
this change the first law becomes

�U = Q + A�b . �4�

The sign of the second term in Eq. �4� is positive, reflecting

that an increase in the spring constant corresponds to a stron-
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ger confinement of the gas, increased density, and positive
work on the gas.

The form of the first law in Eq. �4� runs counter to the
intuition that we develop in studying ideal gases in rigid
containers. It might seem more natural to express the term
describing mechanical work as −b�A instead of A�b. The
former would make the coefficient of the differential element
an intensive variable �analogous to pressure in the familiar
first law�, and the differential element would represent the
change in the variable characterizing the spatial extent of the
system �analogous to volume�. This reasoning is insufficient
in this case. To see why, consider the familiar case of a gas in
a rigid volume. There are processes, such as stirring, that can
increase the pressure from P to P+�P �and increase the
internal energy� while keeping the volume fixed, but none of
these processes involve reversible work; reversible work can
be effected only by external forces acting on the walls to
change the volume. For a harmonically confined gas, pro-
cesses such as stirring can increase the spatial extent of the
gas without a change in the spring constant, but reversible
work can only be affected if energy is expended by an exter-
nal agent to change the spring constant and thus the state of
the confined gas.

The fact that the role of intensive and extensive variables
is reversed between Eqs. �3� and �4� is not really relevant. In
most expressions of the first law, the differential element is
expressed in terms of an extensive variable, but there is no a
priori reason for this form to be the case.4 Additional support
for the form of the first law in Eq. �4� will be seen in its
consequences. As I discuss in Sec. V, the expressions for the
heat capacities depend on the form of the first law, and the
use of −b�A as the work term leads to unphysical results.

As a first step in the determination of A, I consider a
single one-dimensional oscillator with constant mass m and
slowly varying spring constant b with the displacement of

Table I. Comparison of thermodynamic relations for
fined in harmonic traps with effective spring constan

Rigid vol

First law �U=Q−

Equation of state PV=Nk

Internal energy U= 3
2Nk

Entropy S = Nk�lnV

N
�4�m

3N

Heat capacities
CV= 3

2N
and

CP=CV+

Adiabatic process

PV�=con

� =
CP

CV
→

the mass from its equilibrium position given by the real part
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of the complex quantity x̃�t�. The form of the complex equa-
tion of motion for the oscillator is identical to the time-
independent Schrödinger equation for a particle in a potential
that varies slowly in space. The application of the WKB
approximation gives �see, for example, Ref. 5�

x̃�t� � A0

���0�
���t�

exp�i�
0

t

��t��dt�	 . �5�

Equation �5� represents an oscillation with a slowly varying
amplitude that decreases as 1 /�� or equivalently 1 /b1/4. The
energy of the oscillator is

E�t� �
1

2
mA0

2��0���t� , �6�

which gives the differential relation

dE =
1

4
�A0

2��0�
��t�

	db . �7�

The term in parentheses is the square of the slowly varying
amplitude, which I rewrite for convenience in terms of x̄rms

2 ,
the average over one cycle of the square of the real displace-
ment,

dE =
1

2
x̄rms

2 db . �8�

For a three-dimensional oscillator, Eq. �8� becomes

dE =
1

2
�x̄rms

2 + ȳrms
2 + z̄rms

2 �db =
1

2
rrms

2 db . �9�

nteracting gases confined in rigid volumes and con-

Harmonic trap

�U=Q+A�b
or

�U=Q+ 1
2N
r2��b

Ab= 3
2NkT

or

r2�b=3kT

U=3NkT

/2� +
5

2
� S = Nk�ln e

N
� U

3��
	3� + 3�

Cb=3Nk
and

CA=Cb− 3
2Nk

Ab��=constant
or


r2�b��=constant

�� =
CA

Cb
→

1

2

noni
t b.

ume

P�V

T

T

U

h2 	3

k

Nk

stant

5

3

For N particles in a trap we have
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dE = �
i=1

N
1

2
rrms,i

2 db =
1

2
N
r2�db , �10�

where 
r2� represents the ensemble average of the mean
squared displacement of the particles from the center of the
trap. The increased energy of the trapped particles must be
the result of the work that is done to change the spring con-
stant. Therefore the factor A in the mechanical work term of
the first law is

A =
1

2
N
r2� . �11�

In the following I will often express relations in terms of

r2� instead of the extensive variable A because of the obvi-
ous connection of 
r2� to the spatial extent of the gas. For
example, the first law of thermodynamics for N noninteract-
ing particles in a trap can be written as

�U = Q +
1

2
N
r2��b . �12�

Note that knowledge of 
r2� for a gas of particles in ther-
modynamic equilibrium in a harmonic trap is sufficient to
determine the entire density distribution of the particles. In
thermal equilibrium the spatially varying density in the trap
is proportional to exp�−br2 /2kT�, which depends on the ratio
b /T. Knowledge of any moment of this distribution fixes this
ratio, and thus all moments are determined.

III. EQUATIONS OF STATE
AND INTERNAL ENERGY

To derive the equations of state of a trapped gas, I parallel
the treatment of the conventional ideal gas.6–9 In this treat-
ment the ideal gas law is derived from the Helmholtz free
energy expressed in terms of the canonical ensemble parti-
tion function.

The conventional arguments leading to the definition of
the Helmholtz free energy as F=U−TS are not affected by
the change from confinement in a rigid volume to confine-
ment in a trap. If we combine the modified first law with the
definition of free energy, we obtain the relation

dF = − SdT + Adb , �13�

which implies

A = + � �F

�b
	

T,N
�14�

and

S = − � �F

�T
	

b,N
. �15�

The relation between F and the partition function Z is
based on general arguments regarding the entropy, and hence
for particles in a trap it still holds that

F�T,b,N� = − kT ln Z�T,b,N� . �16�

The partition function for a single particle is the sum of the
Boltzmann factors over all of the single-particle states. If we
make the assumption that the level spacing is small com-
pared to thermal energies, that is, ��1 /kT���, the sum

can be approximated by an integral, yielding
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Z1 = �
s

e−��s → �
0

	

f���e−��d� , �17�

where f��� is the density of states. I substitute the density of
states for a three-dimensional harmonic potential10 and find

Z1 = �
0

	 �2

2����3e−��d� = � kT

��
	3

. �18�

The partition function for N noninteracting particles in a di-
lute gas is

Z =
1

N!
�Z1�T,���N � � e

N
	N� kT

��
	3N

, �19�

where I have used Stirling’s approximation for large N. The
Helmholtz free energy is thus

F = − kT ln Z = − NkT ln e

N
� kT

��
	3� . �20�

The expression for F in Eq. �20� can be used to derive
thermodynamic expressions for A and S using Eqs. �14� and
�15�. We have

A = � �F

�b
	

T,N
= � �F

��
	

T,N

d�

db
=

3NkT

2b
. �21�

If I combine Eq. �21� for A in terms of thermodynamic vari-
ables with Eq. �11� derived by considering the work done on
the particles, I find the analog to the ideal gas law for the
trapped particles

Ab =
3

2
NkT �22�

or equivalently


r2�b = 3kT . �23�

The entropy S is given by

S = − � �F

�T
	

b,N
= Nk�ln e

N
� U

3��
	3� + 3� . �24�

Equation �24� is an analog of the Sackur–Tetrode equation6

for the entropy of an ideal gas in a rigid volume.
The internal energy can also be derived from the partition

function

U = − � � ln Z

��
	

N,�
= 3NkT . �25�

This result could be anticipated by considering the equipar-
tition of energy among the translational degrees of freedom
and the potential energy stored in the three-dimensional
“springs” of the trap.

IV. CYCLIC THERMODYNAMIC PROCESSES

Although harmonically trapped gases do not provide a
practical means for converting heat into work,11 it is an in-
structive exercise to consider cyclic processes. In Fig. 1 I
illustrate a reversible cycle that is analogous to the familiar
Carnot cycle. The chosen state variables result in a change in
interpretation from conventional P-V diagrams. That is, the
work done by the gas is positive when paths in 
r2�-b space

are traversed in the direction of decreasing b. The equation
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of state given in Eq. �22� or Eq. �23� shows that the iso-
therms for harmonically trapped gases are still hyperbolas.
For adiabatic processes the combination of the equation of
state with the first law given by Eq. �4� yields


r2�b�� = constant, �26�

where

�� =
CA
Cb

→
1

2
. �27�

At the intersection of isotherms and adiabats, the isotherms
are steeper, which is the reverse of the situation in the usual
Carnot cycle. Therefore the adiabats form the top and bottom
of the closed cycle, and the isotherms are on the sides. It is
straightforward to calculate the net work done by the trapped
gas during the cycle, as well as the heat absorbed from the
hot reservoir, and to show that the efficiency of the heat
engine is 1−TC /TH, as it must be for any reversible cycle
operating between two thermal reservoirs.

During the adiabatic reduction of the spring constant, the
gas cools, which raises the question of whether the gas ap-
proaches the conditions necessary for Bose–Einstein conden-
sation during this cooling. �Approaching the critical tempera-
ture too closely would require a treatment that goes beyond
the classical thermodynamics discussed in this paper.� Dur-
ing an adiabatic reduction of b, the product 
r2�b1/2 is con-
stant. I use the equation of state to eliminate 
r2� and find
that

T 
 b1/2 �28�

during expansion and cooling. The critical temperature for
the onset of Bose–Einstein condensation in an isotropic har-
monic potential is10,12

kTc = � 2N

2.404
	1/3

�� . �29�

Because the critical temperature depends on � and both �
and T scale as b1/2, adiabatic cooling does not bring the gas
closer to the critical temperature. This result can also be
understood from simple scaling arguments. Even though the
density n in the trap is not homogeneous and the de Broglie
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Fig. 1. A cyclic reversible process for a harmonically trapped gas. The gas
begins at point A and undergoes the following sequence: Isothermal expan-
sion, adiabatic expansion, isothermal compression, and adiabatic compres-
sion. The cycle must be traversed in a counterclockwise direction if the
work done by the gas is to be positive.
wavelength is not constant in the trapping potential, it is still
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reasonable to consider an approximate phase space density.
The number density scales as 1 / 
r2�3/2, and the wavelength
scales as �dB�1 /�T. The relation between temperature and
spring constant given by Eq. �28� shows that the phase space
density n�dB

3 is unaffected by adiabatic changes in the spring
constant b.

V. HEAT CAPACITIES

The derivation of the appropriate heat capacities is
straightforward but instructive. In particular, it highlights
how the results for the heat capacity depend on the form of
the first law. If T and b are chosen as the independent vari-
ables characterizing the trapped gas, then

dU = � �U

�T
	

b

dT + � �U

�b
	

T

db . �30�

If we use Eq. �30� in the first law, Eq. �4�, we obtain

dQ = � �U

�T
	

b

dT + � �U

�b
	

T

− A�db , �31�

from which the heat capacity at fixed spring constant fol-
lows,

Cb = � �U

�T
	

b

= 3Nk . �32�

Alternatively, if T and A are chosen as the independent vari-
ables, then

dU = � �U

�T
	

A
dT + � �U

�A	
T

dA �33�

and

db = � db

dT
	

A
dT + � �b

dA	
T

dA . �34�

Using these expressions in the first law gives

dQ = � �U

�T
	

A
− A� �b

�T
	

A
�dT

+ � �U

�A	
T

− � �b

�A	
T
�dA , �35�

from which the heat capacity at constant A, or equivalently
constant density profile, follows,

CA = � �U

�T
	

A
− A� �b

�T
	

A
= Cb −

3

2
Nk . �36�

The fact that CA is less than Cb reflects the fact that to
maintain the constant spatial extent of the gas as energy is
added to the system, the spring constant b must increase,
implying that work is being done on the system as the energy
is added. For comparison, the familiar results for heat capaci-
ties of a conventionally confined gas at constant pressure and
volume are given in Table I.

The results for the heat capacities given in Eqs. �32� and
�36� depend critically on the form of the first law of thermo-
dynamics. The alternative form of the first law discussed in
the paragraph following Eq. �4� would give different results
for the heat capacities. In particular, it would reverse the
relative sizes of the two heat capacities Cb and CA, which is

an unphysical result for a trapped gas.
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VI. DISCUSSION

Thermodynamic variables and relations for gases confined
in particle traps with smoothly varying long-range potentials
are not the same as their counterparts for gases confined in
rigid volumes. In this paper I used the spring constant b and
the mean squared displacement 
r2� as state variables char-
acterizing the confinement and the spatial extent respectively.
�Other choices of variables have been made; see, for ex-
ample, Refs. 13 and 14.� For isotropic harmonic traps the
derivation of thermodynamics relations in terms of b and 
r2�
is straightforward and closely parallels the standard deriva-
tions of the more familiar relations appropriate for gases in
rigid volumes. Some parts of the derivation are actually sim-
pler for harmonically confined gases because of the ease of
deriving an analytical expression for the partition function in
this case. The relations summarized in Table I can be used to
solve many textbook-style thermodynamic problems for har-
monically trapped particles. Generalizations to anisotropic
traps15 and more complicated potentials would make good
student projects.
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Physics and Engineering

Conceive of a sinner who is a Catholic and devout. What complexity in his feeling for the
Church, what pieties of observance live between his sins. He has to make such intricate shows of
concealment to his damned habits. Yet how simple is the Church’s relation to him. Extreme
Unction will deliver his soul from a journey through hell.

So it is with physics and engineering. Physics is the church, and engineering the most devout
sinner. Physics is the domain of beauty, law, order, awe, and mystery of the purest sort; engineer-
ing is partial observance of the laws, and puttering with machines which never work quite as they
should work: engineering, like acts of sin, is the process of proceeding boldly into complex and
often forbidden matters about which one does not know enough – the laws remain to be elucidated
– but the experience of the past and hunger for the taste of the new experience attract one forward.
So bridges were built long before men could perform the mathematics of the bending moment.

Norman Mailer, Of a Fire on the Moon �Little, Brown & Co., Boston, 1970� p. 229–230. Quote suggested by Bartley L.
Cardon.
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