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In a recent article in this jourmal pointed out that the “ (m+2)(m+1)
harmonic oscillator potential used to model most experi- E 2(CamoP—1) =N. ©)]

ments on Bose—Einstein condensation of atomic gases sim- m=0

plifies the numerical analysis. In this note | extend my pre- ) )

vious analysis to allow for anisotropic confining potentials. MATHEMATICA was used in Ref. 1 to solve E(B) numeri-

This extension yields a better comparison with real experically for C, and then used to evaluate Hd) to determine

ments(which are performed in anisotropic confining poten- the occupation numbers.

tials), but another benefit is the added generality which al- For the anisotropic harmonic oscillator potential the fre-

lows the study of Bose—Einstein condensation in systemguencies characterizing the confinement alongxthg, and

whose atoms’ motion is limited to one and two dimensions inz axes are not equal. | make the simplifying assumption that

severely anisotropic traps. the frequencies are all integer multiples of some common
It should be noted that for systems with a finite number offrequencyw, so that the energies of the single-particle states

particles, such as those studied in Ref. 1 and in this Comare

ment, there is no true critical temperature, which can be de-

fined only in the_ limit _of an |nf|n|_te_ syste_:m._ However,_the E=jx(phio)+jy(dhw)+],(rhw)

systems under investigation exhibit rapid increases in the ) _ i

fraction of particles in the ground state when the temperature =P +jyd+jllw, (4)

is lowered sufficiently and also exhibit rapid changes in the

heat capacity. The effective condensation indicated by th#herep, g, andr are all non-negative integers. ff=q

calculations of this paper is consistent with more detailed=1 andr>1, the potential confines particles more tightly in

numerical and analytical studies of condensation in harmonithe z direction than in thex andy directions. States witlp,

and anharmonic trafss. _ o ~ >0 can be frozen out at temperatures much bekW
The occupation number of bosons in a distinct single-=r#, and the particles are effectively confined to two-

particle state with energy; at a temperature parametrized by gimensional motion in the—y plane at these temperatures.

B=1KT is given by the Bose—Einstein distribution, (This freezing-out of states can occur well above the Bose—
Einstein condensation temperatiréf. r=1 and p=qg>1,

n—= 1 1) the particles are effectively confined to one-dimensional mo-
' Ccefa—1- tion along thez axis for large enough values @f and low

enough temperatures. Confinement to lower dimensionality
whereC is a constant determined by the normalization con-affects the Bose—Einstein transition temperature and the na-
dition that the sum of the occupation numbers of all states isure of the phase transition itself.

equal to the total number of particlés (The constan€ can The techniques used in Ref. 1 require a single modifica-
be written in terms of the chemical potentiad as C tion for an anharmonic oscillator: The factor giving the mul-
—e Br) tiplicity of the states with a given energy must be changed.

For the isotropic harmonic oscillator potential considered! e new multiplicities have algebraic expressions in terms of
in Ref. 1, the possible single-particle energies are given bythe “floor” function F(x) giving the largest integer that is
less than a given inputlln MATHEMATICA F(X) is the

E=(ixtiytiot Dho, (2 Flootx] function] - |
Forp=g=1 andr>1, the number of distinct states with

wherej,, j,, andj, are all non-negative integerén what energymi o is given by
follows, the energy scale will be rezeroed, and the term giv-

ing the zero-point energy of the oscillator will be dropped. ny(m,r)=[F(m/r)+1][m+1— 3rF(m/r)], (5)
Simple combinatoric arguments show that there ang-@)

X(m+1)/2 linearly independent states with eneng: , and forr=1 andp=q>1, the number of distinct states is
so that the normalization condition becomes given by
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Fig. 1. The occupation numbers of single-particle states in an anisotropig;iy » The gccupation numbers of single-particle states of an anisotropic
harmonic oscillator potential for 10 000 particles. The particles are relatlvelyharmonic oscillator potential for 10000 particles, at the onset of Bose—

strongly confined in the direction; the energy of the single-particle states is ginstein condensation. The data are for the same confining potential illus-
given by E=(jx+],+70j,)iw. The temperature is given tyT=80iw, trated in Fig. 1, but the temperature has been lowerddTte 66% w. Note
which is above the transition temperature. the relatively large occupation of the state wih- 0.

ny(m,p)= 3[F(m/p)+1][F(m/p)+2]. (6) lower temperature KT=19.3:w). (For the conditions of

. . Fig. 2, C=1. 17 h i
The functionsn; or n, replace the factomg+1)(m+2)/2 in b(legcoﬁecs evgr?Sclos’eratrzglas the temperature is reduczd,

the calculation of the normalization sum. A discussion of the ; - - .
derivation of these formulas is left to a footndte. Calculations for an extremely anis otropic trap th.:q

It is easy to monitor several physical properties as the=1 and r=1000 show condensatlgn of parUchs in the
effective dimensionality of the system is changed by adjustdround state at temperatures belaW=78 . In this case
ing the integer multipliers{p,q,r}. The examples presented € particles are effectively confined to two dimensions. An
in the figures are for the case in which the confinement alon p{)rox[matlg)hn S|m|Ia;r to thatddon('et n Afpp?ntdlx Bf of Re{. 1,
the z axis is “strong,” leading to two-dimensional confine- ut using Ihe continuum en25| y ol states for a two-
ment in thex—y plane(that is,p=q=1 andr>1). I illus- dimensional oscillatorede/(hw), gives an approximate

! ) ' * —

trate the effect of the anisotropy di) the occupation num- ransition temperature &T* = J6N/7"% ». For 10 000 par-
bers for temperatures above the effective condensation
temperature(ii) the value of the condensation temperature,

and (iii) the value of the exponent parametrizing the ground 8 10.000 ! ! ! ' ' ' |
state occupation number below the condensation tempera- .%v' )
ture.

Figure 1 illustrates the occupation numbers for the states % 8,000 -
of the anisotropic oscillator trap with=q=1 andr=70 at 8
temperature given bkT=80hw. This potential confines o 6.000 |
particles much more tightly along ttzeaxis than in the plane i) !
perpendicular to this axis. The calculations assume that there
are 10000 particles in the trap. At this temperature the an- g 4,000 =
isotropy of the trap is evident in the abrupt change in the
occupation numbers at states with energies that are multiples & 2.000 i
of 70f w; at these energies the multiplicity of states changes g ’
as the range of accessibje quantum numbers changes. 5

Bose—Einstein condensation has not yet occurred at this tem-
perature(For the conditions of Fig. 1, the value of the nor-
malization constant i€=1.341. Inclusion of 2000 terms. in .
the normalization sum ensures that the states that are ignored Temperature (UnltS: hw/k)
have mean occupation numbers less than®10

Figure 2 shows the occupation numbers for the same traFfJg. 3. The number of particles in the ground state of an anisotropic har-
ping potential as in Fig. 1, but at a slightly lower temperaturemonic oscillator potential as a function of temperature. The points are the

. _ . . results of calculations for 10 000 particles in a potential with relatively
given bykT_ 66hw. The relatlvely Iarge number of pamCleS trong confinement along theaxis; the energy of the single-particle states

occupying th_e ground state is an ind_ication_ of the onset Ofs given byE=(jx+J,+40j,). The curve is a it of the data to the form of
Bose—Einstein condensation. In the isotropic potential congq. (7). The fit yields values ok T* = 59.4 » and»=2.41. These values lie

sidered in Ref. 1 the onset of condensation occurs at a mudietween those predicted for two- and three-dimensional confinement.
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ticles this approximation gives a transition temperature ofults of this simple numerical technique agree well with ana-

kT*=77.9% w, in very good agreement with the numerical
results.
Below the condensation temperaturé, the fraction of

lytical approximations which account for the finite number
of particles and the anisotropy of the trap.

particles occupying the ground state for several physical sys:Electronic mail: mligare@bucknell.edu

tems can be approximated with the functional form
No T )V

T
where the value of the parameteidepends on the physical
system. This works well for free particles in three dimen-
sions (v=1.5), particles in an isotropic three-dimensional
harmonic oscillator confining potential & 3), and particles
confined in a two-dimensional oscillator trap=2).? This
functional form also gives a good approximation for the

N total

()
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3Considerm units of energyhw. For p=q=1 andr>1, thesem units
must be partitioned between the two “small”-energy modescitations

be considered fully two dimensional, but the effects of the along thex andy axes, and the “large”-energy modéexcitation along
anisotropy are very evident in the observed transition tem- the z axis). There arem+1 ways to arrange the energy units with no

perature ofkT=59.4iw, and the exponenv=2.41. For

10000 particles, all values of the paramatdga measure of
the strength of the confinement along thexis) give very

good fits to Eq.(7), with » and T* varying smoothly from
the theoretical values for two and three dimensions.

energy in the large-energy mode—r+1 ways to arrange the energy
units with one excitation of the large-energy mode, etc. The largest pos-
sible number of excitations in the large-energy modé& (sn/r), so the
multiplicity is ny=(m+1)+(m-r+21)+---+(m—rF(m/r)+1). Sum-
ming theF(m/r)+1 terms in this expression gives E&). Forr=1 and
p=qg>1, there is only one way to arrange the energy units with no exci-

Similar results can be obtained for potentials that strongly tation in the two large-energy modes, two ways to arrange the energy units

confine the particles to one dimension by changing the mul-

tiplicity factor fromny, Eq.(5), ton,, Eq.(6). It is also easy

with one excitation in a large-energy mode, three ways to arrange the
energy with two excitations in large-energy mode, etc. The largest possible
number of excitations in the large-energy mode§ (sn/p), so the mul-

to study the heat capacity near the transition temperature asiplicity is n,=1+2+3+---+ (F(m/p) + 1), which when summed gives
the effective dimensionality of the system changes. The re-Eq. (6).
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A recent paper by Fieldpresents an interesting reformu-

V2-Lorentz transformation\(?-LT) to distinguish them from

lation of special relativity based on the postulates of spaces,e ysual Lorentz transformatidn.

time exchangéSTE) invariance and spatial homogeneity. It
is shown that for the standard configuration of frarSeand
S’ (in one dimension, for conveniencthese postulates lead
to the transformatioh

X' =y(v)(x—vt), (1
, vX
t'=y(v) t_W , (2

where v is the velocity of S' relative to S y(v)=(1
—v?/V?) 12 andV is a universal parameter that remains to
be determined. Equation€l) and (2) are known as the
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The purpose of this comment is to suggest that a compari-
son of the STE symmetry approach with the derivation and
discussion of th&/?-LT presented by Rindléwould also be
helpful to students. The following could be noted.

(1) STE is defined ag«—Vt andx’ < Vt', whereV is a
parametet. By contrast, the treatment in Ref. 2 is based on
the relativity principle (RP) which uses the exchanges
X<—Xx', tet’, andv— —v. Thus STE transforms Eq$l)
and(2) into each other, whereas the exchange used in the RP
transforms Eqgs(1) and(2) into their inverses.

(2) In STE, the paramet&r and two of its propertiegeal
and universalenter at the beginning of the discussion. In the
RP approach, the parametef is defined in terms of the
unknown coefficienty(v) appearing in Eq91) and(2) and
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