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In a recent article in this journal1 I pointed out that the
harmonic oscillator potential used to model most expe
ments on Bose–Einstein condensation of atomic gases
plifies the numerical analysis. In this note I extend my p
vious analysis to allow for anisotropic confining potentia
This extension yields a better comparison with real exp
ments~which are performed in anisotropic confining pote
tials!, but another benefit is the added generality which
lows the study of Bose–Einstein condensation in syste
whose atoms’ motion is limited to one and two dimensions
severely anisotropic traps.

It should be noted that for systems with a finite number
particles, such as those studied in Ref. 1 and in this C
ment, there is no true critical temperature, which can be
fined only in the limit of an infinite system. However, th
systems under investigation exhibit rapid increases in
fraction of particles in the ground state when the tempera
is lowered sufficiently and also exhibit rapid changes in
heat capacity. The effective condensation indicated by
calculations of this paper is consistent with more detai
numerical and analytical studies of condensation in harmo
and anharmonic traps.2

The occupation number of bosons in a distinct sing
particle state with energye l at a temperature parametrized b
b51/kT is given by the Bose–Einstein distribution,

nl5
1

Cebe l21
, ~1!

whereC is a constant determined by the normalization co
dition that the sum of the occupation numbers of all state
equal to the total number of particlesN. ~The constantC can
be written in terms of the chemical potentialm as C
5e2bm.!

For the isotropic harmonic oscillator potential consider
in Ref. 1, the possible single-particle energies are given

E5~ j x1 j y1 j z1
3
2!\v, ~2!

where j x , j y , and j z are all non-negative integers.~In what
follows, the energy scale will be rezeroed, and the term g
ing the zero-point energy of the oscillator will be droppe!
Simple combinatoric arguments show that there are (m12)
3(m11)/2 linearly independent states with energym\v,
so that the normalization condition becomes
76 Am. J. Phys.70 ~1!, January 2002 http://ojps.aip.org
i-
m-
-
.
i-

l-
s

n

f
-

e-

e
re
e
e
d
ic

-

-
is

d

-

(
m50

`
~m12!~m11!

2~Cem\vb21!
5N. ~3!

MATHEMATICA was used in Ref. 1 to solve Eq.~3! numeri-
cally for C, and then used to evaluate Eq.~1! to determine
the occupation numbers.

For the anisotropic harmonic oscillator potential the fr
quencies characterizing the confinement along thex, y, and
z axes are not equal. I make the simplifying assumption t
the frequencies are all integer multiples of some comm
frequencyv, so that the energies of the single-particle sta
are

E5 j x~p\v!1 j y~q\v!1 j z~r\v!

5~ j zp1 j yq1 j zr !\v, ~4!

where p, q, and r are all non-negative integers. Ifp5q
51 andr .1, the potential confines particles more tightly
the z direction than in thex andy directions. States withj z

.0 can be frozen out at temperatures much belowkT
5r\v, and the particles are effectively confined to tw
dimensional motion in thex–y plane at these temperature
~This freezing-out of states can occur well above the Bos
Einstein condensation temperature.! If r 51 and p5q.1,
the particles are effectively confined to one-dimensional m
tion along thez axis for large enough values ofp and low
enough temperatures. Confinement to lower dimensiona
affects the Bose–Einstein transition temperature and the
ture of the phase transition itself.

The techniques used in Ref. 1 require a single modifi
tion for an anharmonic oscillator: The factor giving the mu
tiplicity of the states with a given energy must be chang
The new multiplicities have algebraic expressions in terms
the ‘‘floor’’ function F(x) giving the largest integer that i
less than a given input.@In MATHEMATICA F(x) is the
Floor@x# function.#

For p5q51 andr .1, the number of distinct states wit
energym\v is given by

n1~m,r !5@F~m/r !11#@m112 1
2 rF ~m/r !#, ~5!

and for r 51 andp5q.1, the number of distinct states i
given by
76/ajp/ © 2002 American Association of Physics Teachers
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n2~m,p!5 1
2 @F~m/p!11#@F~m/p!12#. ~6!

The functionsn1 or n2 replace the factor (m11)(m12)/2 in
the calculation of the normalization sum. A discussion of
derivation of these formulas is left to a footnote.3

It is easy to monitor several physical properties as
effective dimensionality of the system is changed by adju
ing the integer multipliers,$p,q,r %. The examples presente
in the figures are for the case in which the confinement al
the z axis is ‘‘strong,’’ leading to two-dimensional confine
ment in thex–y plane~that is,p5q51 andr .1!. I illus-
trate the effect of the anisotropy on~i! the occupation num-
bers for temperatures above the effective condensa
temperature,~ii ! the value of the condensation temperatu
and ~iii ! the value of the exponent parametrizing the grou
state occupation number below the condensation temp
ture.

Figure 1 illustrates the occupation numbers for the sta
of the anisotropic oscillator trap withp5q51 andr 570 at
temperature given bykT580\v. This potential confines
particles much more tightly along thez axis than in the plane
perpendicular to this axis. The calculations assume that t
are 10 000 particles in the trap. At this temperature the
isotropy of the trap is evident in the abrupt change in
occupation numbers at states with energies that are mult
of 70\v; at these energies the multiplicity of states chan
as the range of accessiblej z quantum numbers change
Bose–Einstein condensation has not yet occurred at this
perature.~For the conditions of Fig. 1, the value of the no
malization constant isC51.341. Inclusion of 2000 terms. in
the normalization sum ensures that the states that are ign
have mean occupation numbers less than 1026.!

Figure 2 shows the occupation numbers for the same t
ping potential as in Fig. 1, but at a slightly lower temperatu
given bykT566\v. The relatively large number of particle
occupying the ground state is an indication of the onse
Bose–Einstein condensation. In the isotropic potential c
sidered in Ref. 1 the onset of condensation occurs at a m

Fig. 1. The occupation numbers of single-particle states in an anisotr
harmonic oscillator potential for 10 000 particles. The particles are relativ
strongly confined in thez direction; the energy of the single-particle states
given by E5( j x1 j y170j z)\v. The temperature is given bykT580\v,
which is above the transition temperature.
77 Am. J. Phys., Vol. 70, No. 1, January 2002
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lower temperature (kT519.3\v). ~For the conditions of
Fig. 2, C51.005 17, and as the temperature is reducedC
becomes even closer to 1.!

Calculations for an extremely anisotropic trap withp5q
51 and r 51000 show condensation of particles in th
ground state at temperatures belowkT578\v. In this case
the particles are effectively confined to two dimensions.
approximation similar to that done in Appendix B of Ref.
but using the continuum density of states for a tw
dimensional oscillator,ede/(\v)2, gives an approximate
transition temperature ofkT* 5A6N/p2\v. For 10 000 par-

ic
ly

Fig. 2. The occupation numbers of single-particle states of an anisotr
harmonic oscillator potential for 10 000 particles, at the onset of Bos
Einstein condensation. The data are for the same confining potential i
trated in Fig. 1, but the temperature has been lowered tokT566\v. Note
the relatively large occupation of the state withE50.

Fig. 3. The number of particles in the ground state of an anisotropic
monic oscillator potential as a function of temperature. The points are
results of calculations for 10 000 particles in a potential with relative
strong confinement along thez axis; the energy of the single-particle state
is given byE5( j x1 j y140j z). The curve is a fit of the data to the form o
Eq. ~7!. The fit yields values ofkT* 559.4\v andn52.41. These values lie
between those predicted for two- and three-dimensional confinement.
77Notes and Discussions
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ible
ticles this approximation gives a transition temperature
kT* 577.97\v, in very good agreement with the numeric
results.

Below the condensation temperatureT* , the fraction of
particles occupying the ground state for several physical
tems can be approximated with the functional form

N0

Ntotal
512S T

T* D n

, ~7!

where the value of the parametern depends on the physica
system. This works well for free particles in three dime
sions (n51.5), particles in an isotropic three-dimension
harmonic oscillator confining potential (n53), and particles
confined in a two-dimensional oscillator trap (n52).2 This
functional form also gives a good approximation for t
ground-state fraction for the anisotropic traps investigated
this Comment. Figure 3 shows a fit to a function with t
form of Eq. ~7! for 10 000 particles confined in a trap wit
p5q51 and r 540. This trap is not anisotropic enough
be considered fully two dimensional, but the effects of t
anisotropy are very evident in the observed transition te
perature ofkT559.4\v, and the exponentn52.41. For
10 000 particles, all values of the parameterr ~a measure of
the strength of the confinement along thez axis! give very
good fits to Eq.~7!, with n and T* varying smoothly from
the theoretical values for two and three dimensions.

Similar results can be obtained for potentials that stron
confine the particles to one dimension by changing the m
tiplicity factor from n1 , Eq.~5!, to n2 , Eq.~6!. It is also easy
to study the heat capacity near the transition temperatur
the effective dimensionality of the system changes. The
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sults of this simple numerical technique agree well with a
lytical approximations which account for the finite numb
of particles and the anisotropy of the trap.2
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3Considerm units of energy\v. For p5q51 and r .1, thesem units
must be partitioned between the two ‘‘small’’-energy modes~excitations
along thex and y axes!, and the ‘‘large’’-energy mode~excitation along
the z axis!. There arem11 ways to arrange the energy units with n
energy in the large-energy mode,m2r 11 ways to arrange the energ
units with one excitation of the large-energy mode, etc. The largest p
sible number of excitations in the large-energy mode isF(m/r ), so the
multiplicity is n15(m11)1(m2r 11)1¯1(m2rF (m/r )11). Sum-
ming theF(m/r )11 terms in this expression gives Eq.~5!. For r 51 and
p5q.1, there is only one way to arrange the energy units with no ex
tation in the two large-energy modes, two ways to arrange the energy
with one excitation in a large-energy mode, three ways to arrange
energy with two excitations in large-energy mode, etc. The largest poss
number of excitations in the large-energy modes isF(m/p), so the mul-
tiplicity is n25112131¯1(F(m/p)11), which when summed gives
Eq. ~6!.
riance: Special relativity as a
. J. Phys. 69 „5…, 569–575 „2001…‡

of Natal, Private Bag X01, Scottsville,

2001

ari-
nd

on
s

RP

he
A recent paper by Field1 presents an interesting reformu
lation of special relativity based on the postulates of spa
time exchange~STE! invariance and spatial homogeneity.
is shown that for the standard configuration of framesS and
S8 ~in one dimension, for convenience! these postulates lea
to the transformation1

x85g~v !~x2vt !, ~1!

t85g~v !S t2
vx

V2D , ~2!

where v is the velocity of S8 relative to S, g(v)5(1
2v2/V2)21/2, andV is a universal parameter that remains
be determined. Equations~1! and ~2! are known as the
–
V2-Lorentz transformation (V2-LT) to distinguish them from
the usual Lorentz transformation.2

The purpose of this comment is to suggest that a comp
son of the STE symmetry approach with the derivation a
discussion of theV2-LT presented by Rindler2 would also be
helpful to students. The following could be noted.

~1! STE is defined asx↔Vt and x8↔Vt8, whereV is a
parameter.1 By contrast, the treatment in Ref. 2 is based
the relativity principle ~RP! which uses the exchange
x↔x8, t↔t8, and v→2v. Thus STE transforms Eqs.~1!
and~2! into each other, whereas the exchange used in the
transforms Eqs.~1! and ~2! into their inverses.

~2! In STE, the parameterV and two of its properties~real
and universal! enter at the beginning of the discussion. In t
RP approach, the parameterV2 is defined in terms of the
unknown coefficientg(v) appearing in Eqs.~1! and~2! and
78/ajp/ © 2002 American Association of Physics Teachers


