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Bose–Einstein condensation is the anomalous accumulation of particles in the ground state of a
system of bosons, when compared with the population in a system of particles obeying classical
statistics. I use undergraduate-level statistical mechanics and a symbolic algebra computer program
to study the occupation numbers of the energy levels of a finite number of noninteracting particles
confined in a three-dimensional harmonic oscillator potential. I also calculate the heat capacity of
the gas. The harmonic oscillator potential simplifies the calculations and approximates the
conditions of the recent experiments achieving Bose–Einstein condensation in laser-cooled alkali
vapors. © 1998 American Association of Physics Teachers.
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I. INTRODUCTION

The recent achievement of Bose–Einstein condensatio
laser-cooled alkali vapors confined in magnetic traps1–3 is an
exciting development that has been well documented in
popular press as well as the scientific literature. The Bo
Einstein condensate has been hailed as a new form of ma
and as the ‘‘molecule of the year’’ in 1995 byScience
magazine.4 Bose–Einstein condensation is possibly the m
theoretically tractable of all phase transitions, and the co
bination of topical interest and relative simplicity make it
good candidate for inclusion in the undergraduate phy
curriculum. Standard textbook treatments of Bose–Eins
condensation5 investigate a gas ofN noninteracting bosons
in a rigid container of volumeV. This approach, with some
extensions, was discussed in a recent ‘‘New Problem’’ in t
Journal.6 In this paper I use the quantum statistics that is p
of most undergraduate modern physics courses an
computer-based symbolic algebra package to investigate
phenomenon of Bose–Einstein condensation of a fixed n
ber of particles confined in a three-dimensional harmo
oscillator potential. This potential more closely approxima
the conditions of the experiments performed to date on al
atoms, and it simplifies the calculations.~Analytical approxi-
mations for this system have been investigated by sev
authors. Results for the largeN limit are discussed in Ref. 7
and results for finite values ofN are discussed in Ref. 8.!
185 Am. J. Phys.66 ~3!, March 1998
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Bose–Einstein condensation is an accumulation of po
lation in the ground state of a system of bosons as the t
perature of the system is reduced below a critical tempe
ture Tc . Of course the average occupation number of
ground state of any system will increase as the temperatu
reduced, independent of whether the system consists of
mions, bosons, or particles assumed to obey classical st
tics. The phenomenon of Bose–Einstein condensation
however, a very abrupt rise in the number of particles a
critical temperature well above the temperature at wh
classical particles begin to accumulate in the lowest ene
state. This condensation is entirely a consequence of
quantum statistics of the Bose–Einstein distribution, and
curs even for ideal noninteracting particles. The effect of
quantum statistics manifests itself when the wave functi
of the particles overlap, or in other words, when the de B
glie wavelength of the particles in a gas is of the same or
of magnitude as the interparticle separation.~For a general
discussion of Bose–Einstein condensation and recent ex
ments I refer the reader to articles by Burnett9 and
Wieman,10 while Kleppner11 offers a personal view of the
significance of the experiments.!

Determining the number of particles in the ground state
a simple physical system is in principle a straightforwa
calculation for any particle statistics. For particles in an is
tropic harmonic well the problem is very easy to set up b
cause of the regular spacing of the energy levels and
185© 1998 American Association of Physics Teachers
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easily determined multiplicity of the levels. The mathema
cal calculations are then easy to handle with a few lines
instructions using a software package likeMathematica,
Maple, or MathCad. I review the energy levels of a three
dimensional quantum oscillator in Sec. II, and I discuss
calculation of occupation numbers for classical particles
bosons in Secs. III and IV, respectively. The results of
analysis are most apparent in the graphs of those sectio
then briefly discuss the heat capacity of the gas in Sec
Some details of aMathematicaprogram are discussed i
Appendix A, and the work in this paper is related to a sta
dard approximation in Appendix B.

II. 3-D HARMONIC OSCILLATOR

The energy levels of a one-dimensional quantum harmo
oscillator are

E1D5~ j 1 1
2!\v, ~1!

wherev is the angular frequency of the classical oscilla
and j >0 is an integer. For a particle confined in a thre
dimensional harmonic potential well the oscillations in t
three directions are independent, so the total energy is
sum of three terms of the same form, with independent qu
tum numbersj i for each dimension:

E3D5~ j x1 1
2!\vx1~ j y1 1

2!\vy1~ j z1
1
2!\vz . ~2!

For simplicity I will consider an isotropic oscillator, i.e
vx5vy5vz[v, and I rezero the energy scale at the ene
of the ground state withj x5 j y5 j z50. With these simplifi-
cations the energy becomes

E3D5~ j x1 j y1 j z!\v. ~3!

The total energy is thus expressed as an integral numbe
the units \v. Simple combinatoric arguments12 show that
there are (m12)(m11)/2 linearly independent states wit
an energym\v. For example, there are three different sta
with total energy\v, six different states with total energ
2\v, and so on.

When there are many noninteracting bosons in the s
trap the total energy will simply be the sum of the individu
particle energies given by Eq.~3!. For bosons there may b
many particles occupying the same single-particle st
Those particles in the same harmonic oscillator state ar
some sense ‘‘on top of each other’’ in that they have exa
the same spatial probability distribution.

III. OCCUPATION NUMBERS FOR CLASSICAL
PARTICLES

In this section I review the derivation of the occupati
numbers of the energy levels of a three-dimensional quan
harmonic oscillator when the particles are assumed to o
classical statistics. For all of the calculations in this pape
assume a fixed number of noninteracting particles,N, and I
assume that the particles are maintained in a heat bath
temperatureT. The particles are assumed to be structurel
point particles with no internal energy states. The numbe
classical particles occupying any distinct single particle s
with energye l is given by the Boltzmannn distribution:

~nl !Classical5
1

Cebe l
, ~4!
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whereb51/kT, andC is a constant that is chosen so that t
sum of the occupation numbers of all states is equal to
total number of particles,N, in the well. The total occupation
numberN m of all states with a given energym\v is given
by Eq. ~4! multiplied by the multiplicity of the energy level
i.e.,

~N m!Classical5
~m12!~m11!

2Cem\vb . ~5!

The only difficulty is determining the normalization consta
C. This constant is chosen to satisfy the condition

(
m50

`
~m12!~m11!

2Cem\vb 5N. ~6!

For particle numbersN that are not too large it is easy t
determineC by numerically solving Eq.~6! using a symbolic
algebra package on a personal computer. The constant
then be used by the same package to evaluate the occup
numbers given by Eq.~5!. @An alternative approach is to
solve Eq.~6! algebraically forC and manipulate the result t
obtain a formal expression for the occupation number,
the resulting expression is not transparent or easy to ev
ate. And in the case of particles obeying Bose–Einstein
tistics treated in the next section such an algebraic solutio
not possible.#

Figure 1 is a sampleMathematicaprogram that performs
this calculation. The first four lines set the values of vario
constants. The quantity\v is set to 1 for convenience, bu
the symbolhw is left in the subsequent expressions so t
their meaning is easier to understand. The following 6 lin

1. define the distribution in terms of the unknown norm
ization constantc ,

2. algebraically sum the occupation numbers,
3. solve for the normalization constant,
4. calculate the numerical values of all the occupat

numbers using the normalization constant,
5. extract the value of the ground state occupation num

and
6. plot the occupation numbers as a function of energy

This program executes in about 30 s on a standard comp
with a 486 processor. Further details of the program are
cussed in Appendix A.

Figure 2 includes plots of Eq.~5! for at sample of 10 000
particles at three temperatures, and in Fig. 3 I have plotted
the number of particles in the ground state as a function
temperature. The occupation numbers illustrated in Fig
show maxima for states with energies greater than zero
cause of the rapidly rising multiplicity of the energy level
At high enoughm the multiplicity factor in Eq.~5! is domi-
nated by the exponential factor in the denominator, and
occupation numbers decrease with increasingm.

IV. QUANTUM STATISTICS OF BOSONS

The statistics of quantum particles are different than th
of classical particles, and the differences will manifest the
selves in the occupation numbers of energy levels in gase
very low temperature, or very high density. The origin of t
different statistics is the indistinguishability of quantum pa
ticles and the requirement that the wave function for bos
by symmetric under particle exchange. The calculation of
occupation numbers proceeds exactly as in the case of
186Martin Ligare
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Fig. 1. Mathematicacode for calculation of occupation numbers of classical particles in an isotropic three-dimensional harmonic oscillator potentia
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sical particles, except a different distribution is used. T
analog of the Boltzmann distribution for occupation numb
of bosons in single-particle states is the Bose–Einstein
tribution,

~nl !BE5
1

C8ebe l21
, ~7!

whereC8 is normalization constant analogous to the const
C in the classical case. The total occupation number in st
with an energym\v is then

~N m!BE5
~m12!~m11!

2~C8em\v21!
. ~8!

The Mathematicacode given in Fig. 1 needs to be chang
only in the single line where the distribution is defined
order to redo the calculations for bosons.

The energy level occupation numbers that are given
Eq. ~8! for a sample of 10 000 bosons are plotted for fo
temperatures in Fig. 4. For high enough temperatures
187 Am. J. Phys., Vol. 66, No. 3, March 1998
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results for the energy level occupation numbers given by
quantum statistics are almost indistinguishable from th
derived for classical particles in Eq.~5!. This is illustrated in
the similarity of graphs in Fig. 2 and Fig. 4 forkT525\v.
The graphs in Figs. 2 and 4 begin to appear different
temperatures such thatkT&19.7\v. The results plotted in
Fig. 4 calculated using the Bose–Einstein distribution d
play a sharp rise in the population in the ground state be
this temperature. In Fig. 3 the number of atoms in the grou
state of the gas of bosons is plotted versus the temperatu
the gas; this graph shows a very sharp rise belowkT
520\v compared to the data for classical particles plot
in the same figure. The abrupt rise in the number of bos
in the ground state is the signature of Bose–Einstein cond
sation. In the limit of large particle numbers the graph of t
number of bosons in the ground state acquires a true k
with a discontinuous derivative at the critical temperatu
Tc . It is worth emphasizing that this condensation occ
even though the particles do not interact, in contrast to
187Martin Ligare
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case of more familiar phase transitions which are due to
termolecular forces. Bose–Einstein condensation is entire
consequence of the ‘‘extra’’21 in the denominator of the
Bose–Einstein distribution, Eq.~7!.

V. HEAT CAPACITY OF THE BOSE CONDENSATE

The same program that calculates the occupation num
of the energy levels of a gas can easily calculate the aver
thermal energy of the gas,

U5 (
m50

`

N mem5 (
m50

`
~m12!~m11!

2~C8em\v21!
m\v. ~9!

The average energy per particle of a gas 10 000 particles
function of temperature is displayed in Fig. 5.

Fig. 2. Occupation numbers of energy states for 10 000 classical particle
an isotropic harmonic oscillator potential at three temperatures:kT
525\v, kT515\v, andkT55\v.

Fig. 3. Occupation number of ground state as a function of temperature
10 000 classical particles and 10 000 bosons in an isotropic harmonic o
lator potential.
188 Am. J. Phys., Vol. 66, No. 3, March 1998
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The heat capacity of gas is defined as

C5
dU

dT
. ~10!

~Heat capacity is usually measured at constant volume o
constant pressure. For particles in a harmonic trap nei

in
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Fig. 4. Occupation numbers of energy states for 10 000 bosons in an
tropic harmonic oscillator potential forkT525\v, kT519.6\v, kT
519.4\v, andkT518\v. ~Note the change of scale on the lowest grap!
188Martin Ligare
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concept is really appropriate. For example, the volume oc
pied by the particles naturally changes as the energy
particle changes, but no work is done by the expansio!
Figure 6 shows the heat capacity determined numeric
from the data plotted in Fig. 5. The heat capacity per part
shows the characteristic ‘‘lambda’’ shape at the transit
temperature, and approaches the classical value of 3k at
higher temperatures.~The translational motion of the par
ticles contributes 3k/2 to the heat capacity per particle, an
the potential energy of the harmonic oscillator potential c
tributes an additional 3k/2.) A more analytical treatment o
the heat capacity in the true thermodynamic limit is given
Refs. 7 and 8.

APPENDIX A: NOTES ON MATHEMATICACODE

While the Mathematicacode of Fig. 1 is conceptually
straightforward, a few constants in the code must be cho
with care. The normalization sum is nominally a sum of
infinite number of terms; in practice the required number
terms in the normalization sum,sumlim , will depend on the
temperature, and the number of atoms. The sum must inc
all energy levels that have an appreciable occupation num
for the given conditions. The required number can be de
mined empirically by trying different limits and examinin
graphs like that produced in the last line of the code in Fig
The displayed graph shows that the occupation number
levels withE5300 \v is very small, and thus the sum wit
300 terms includes all levels with appreciable occupati
For higher temperatures the number of terms would hav
be increased. With more atoms in the trap, Bose–Eins
condensation occurs at a higher temperature, and thus m
terms must be used in this case.~The critical temperature
scales asN1/3 as is discussed in Appendix B.!

In determining the normalization constantsC ~in the case
of classical particles! andC8 ~in the case of bosons! I use the
Mathematicafunction FindRoot which requires a starting
value for its root searching algorithm. In the case of class
particles this choice is not terribly critical, but in the case

Fig. 5. Average energy per particle as a function of temperature for 10
bosons in an isotropic harmonic oscillator potential.
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bosons the constantC8 gets extremely close to 1 as the tem
perature nears the critical temperature.~Standard approxima
tion schemes for determining the critical temperature rely
settingC8 exactly equal to 1 as is discussed in Appendix B!
If the starting value of theFindRoot function is not suffi-
ciently close to 1, the root finding algorithm may actua
jump past the root that is close to 1 and find an unphys
value ofC8 that is less than 1.

APPENDIX B: CONNECTION TO STANDARD
APPROXIMATIONS

In conventional introductions to Bose–Einstein conden
tion the volume in which the particles are contained is co
sidered large enough that the energy states are very clo
spaced, and the sum over all energy states like that in Eq~6!
is converted to an integral. The continuum density of sta
for an isotropic three-dimensional quantum harmonic os
lator is given by

f ~e! de5
e2

2~\v!3 de, ~B1!

and it seems that the normalization sum should be repla
by the integral condition

E
0

` e2

~C8ebe21!
de52N~\v!3. ~B2!

There is a flaw in this argument because this integral con
tion is only valid for temperatures above a critical tempe
ture. To see this, imagine that the temperature of the sys
is lowered. As the temperature decreases, so must the
stantC8 in order to keep the left side of the equation co
stant. Examination of the Bose–Einstein distribution, Eq.~7!,
shows thatC8 must always be greater than 1 if the occup
tion numbers are to be positive. Thus, the temperature
which C851 is a critical temperature for this integral. Th
problem is that the ground state with zero energy is co
pletely neglected in the integral of Eq.~B2! because the den
sity of states factor, Eq.~B1!, goes to zero ate50. The

0
Fig. 6. Heat capacity per particle as a function of temperature for 10
bosons in an isotropic harmonic oscillator potential.
189Martin Ligare
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occupation of the ground state must be explicitly retained
the transition from the sum to an integral, so that below
critical temperature the normalization condition is

1

C821
1

1

2~\v!3E
0

` e2

~C8ebe21!
de5N. ~B3!

Above the critical temperature the number of particles in
ground state is so small that it can be ignored.

The critical temperature is thus determined by evaluat
the integral in Eq.~B2! whenC851, and solving forT. This
gives

kTc5S 2N

2.404D
1/3

\v. ~B4!

This result was derived In Ref. 7, along with transition te
peratures for other external potentials. For the case of 10
particles studied in this paper, this predicts an approxim
critical temperature of

kTc.20.3\v, ~B5!

which is very close to the value determined in Sec. IV.
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