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Bose—Einstein condensation is the anomalous accumulation of particles in the ground state of a
system of bosons, when compared with the population in a system of particles obeying classical
statistics. | use undergraduate-level statistical mechanics and a symbolic algebra computer program
to study the occupation numbers of the energy levels of a finite number of noninteracting particles
confined in a three-dimensional harmonic oscillator potential. | also calculate the heat capacity of
the gas. The harmonic oscillator potential simplifies the calculations and approximates the
conditions of the recent experiments achieving Bose—Einstein condensation in laser-cooled alkali
vapors. © 1998 American Association of Physics Teachers.

[. INTRODUCTION Bose—Einstein condensation is an accumulation of popu-
lation in the ground state of a system of bosons as the tem-
The recent achievement of Bose—Einstein condensation gferature of the system is reduced below a critical tempera-
laser-cooled alkali vapors confined in magnetic tfaps an  ture T,. Of course the average occupation number of the
exciting development that has been well documented in thground state of any system will increase as the temperature is
popular press as well as the scientific literature. The Bose+educed, independent of whether the system consists of fer-
Einstein condensate has been hailed as a new form of mattehions, bosons, or particles assumed to obey classical statis-
and as the "molecule of the year” in 1995 b§cience tics. The phenomenon of Bose—Einstein condensation is,
magazin€. Bose—Einstein condensation is possibly the moshowever, a very abrupt rise in the number of particles at a
theoretically tractable of all phase transitions, and the comgritical temperature well above the temperature at which
bination of topical interest and relative simplicity make it a classical particles begin to accumulate in the lowest energy
good candidate for inclusion in the undergraduate physicstate. This condensation is entirely a consequence of the
curriculum. Standard textbook treatments of Bose—Einsteigjuantum statistics of the Bose—Einstein distribution, and oc-
condensatiohinvestigate a gas dfl noninteracting bosons curs even for ideal noninteracting particles. The effect of the
in a rigid container of volum&/. This approach, with some quantum statistics manifests itself when the wave functions
extensions, was discussed in a recent “New Problem” in thisof the particles overlap, or in other words, when the de Bro-
JournaP In this paper | use the quantum statistics that is parglie wavelength of the particles in a gas is of the same order
of most undergraduate modern physics courses and @éf magnitude as the interparticle separatitfor a general
computer-based symbolic algebra package to investigate thitscussion of Bose—Einstein condensation and recent experi-
phenomenon of Bose—Einstein condensation of a fixed numments | refer the reader to articles by Burhetind
ber of particles confined in a three-dimensional harmonionieman!® while Kleppnet! offers a personal view of the
oscillator potential. This potential more closely approximatessignificance of the experiments.
the conditions of the experiments performed to date on alkali Determining the number of particles in the ground state of
atoms, and it simplifies the calculatioriénalytical approxi- a simple physical system is in principle a straightforward
mations for this system have been investigated by severaalculation for any particle statistics. For particles in an iso-
authors. Results for the largé limit are discussed in Ref. 7, tropic harmonic well the problem is very easy to set up be-
and results for finite values & are discussed in Ref.)8. cause of the regular spacing of the energy levels and the
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easily determined multiplicity of the levels. The mathemati-whereg=1/kT, andC is a constant that is chosen so that the
cal calculations are then easy to handle with a few lines okum of the occupation numbers of all states is equal to the
instructions using a software package likéathematica  total number of particlesy, in the well. The total occupation
Maple, or MathCad | review the energy levels of a three- nymper. s, of all states with a given energy# o is given

dimensipnal quantum_oscillator in Sec. I, a}nd I dispuss theby Eq. (4) multiplied by the multiplicity of the energy level,
calculation of occupation numbers for classical particles angl g

bosons in Secs. lll and 1V, respectively. The results of the’

analysis are most apparent in the graphs of those sections. I . ~(Mm+2)(m+1) 5
then briefly discuss the heat capacity of the gas in Sec. V. (7" m) classica™ 2CeMeB -

Some details of avathematicaprogram are discussed in Th v difficulty is d ining th lizati
Appendix A, and the work in this paper is related to a stan-/ "€ Only difficulty is determining the normalization constant

dard approximation in Appendix B. C. This constant is chosen to satisfy the condition
5 (m+2)(m+1)
[l. 3-D HARMONIC OSCILLATOR mE:O T oCameB N. (6)

The energy levels of a one-dimensional quantum harmonic For particle numbers! that are not too large it is easy to
oscillator are determineC by numerically solving Eq(6) using a symbolic
Eip=(j+ Hho, (1) algebra package on a personal computer. The constant can
then be used by the same package to evaluate the occupation
where w is the angular frequency of the classical oscillatornumbers given by Eq(5). [An alternative approach is to
and j=0 is an integer. For a particle confined in a three-solve Eq.(6) algebraically forC and manipulate the result to
dimensional harmonic potential well the oscillations in theobtain a formal expression for the occupation number, but
three directions are independent, so the total energy is thiée resulting expression is not transparent or easy to evalu-
sum of three terms of the same form, with independent quarate. And in the case of particles obeying Bose—Einstein sta-

tum numberg; for each dimension: tistics treated in the next section such an algebraic solution is
- I L not possiblel.
Esp=(jx+ 2fioxt (jy+ Doyt (j,+ )lio,. (2 Figure 1 is a sampl&lathematicaprogram that performs

For simplicity | will consider an isotropic oscillator, i.e. this calculation. The first four lines set the values of various

wy= wy=w,;=w, and | rezero the energy scale at the energ);:onstants. The quantityw is set to 1 for convenience, but

o 4 e the symbolhw is left in the subsequent expressions so that
of t_he ground state witf,=jy=j,=0. With these simplif their meaning is easier to understand. The following 6 lines:
cations the energy becomes

1. define the distribution in terms of the unknown normal-
Esp=(ixtiyti)ho. (3) ization constant,
2. algebraically sum the occupation numbers,

The total energy is thus expressed as an integral number of 3. solve for the normalization constant,

the units#iw. Simple compmatonq argumenfsshow that' 4. calculate the numerical values of all the occupation
there are (n+2)(m+1)/2 linearly independent states with numbers using the normalization constant

an energymiz . For example, there are three different states 5_exiract the value of the ground state occupation number,
with total energyAw, six different states with total energy gng

2hw, and so on. 6. plot the occupation numbers as a function of energy.

When there are many noninteracting bosons in the sa _ .
y g m?ms program executes in about 30 s on a standard computer

trap the total energy will simply be the sum of the individual " | ! X
paﬁcicle energies gi)\//en by E%. For bosons there may be with a 486 processor. Further details of the program are dis-
Lussed in Appendix A.

ticl [ th ingle-particl tat : .
many paricles occupying e same sSinge-parcie sta Figure 2 includes plots of Ed5) for at sample of 10 000

Those particles in the same harmonic oscillator state are in " . .
articles at three temperatures, and in.dg have plotted

some sense “on top of each other” in that they have exactI)Ph ber of cles in th d f - f
the same spatial probability distribution. the number of particles in the ground state as a function o

temperature. The occupation numbers illustrated in Fig. 2
show maxima for states with energies greater than zero be-
lIl. OCCUPATION NUMBERS FOR CLASSICAL cause of the rapidly rising multiplicity of the energy levels.
PARTICLES At high enoughm the multiplicity factor in Eq.(5) is domi-
nated by the exponential factor in the denominator, and the

In this section | review the derivation of the occupation . o .
rgccupanon numbers decrease with increasing

numbers of the energy levels of a three-dimensional quantu
harmonic oscillator when the particles are assumed to obey
classical stgtistics. For all of th_e calcu!ations i_n this paper I, QUANTUM STATISTICS OF BOSONS
assume a fixed number of noninteracting particsand |
assume that the particles are maintained in a heat bath at aThe statistics of quantum particles are different than those
temperaturel. The particles are assumed to be structurelessf classical particles, and the differences will manifest them-
point particles with no internal energy states. The number o$elves in the occupation numbers of energy levels in gases at
classical particles occupying any distinct single patrticle staterery low temperature, or very high density. The origin of the
with energye, is given by the Boltzmannn distribution: different statistics is the indistinguishability of quantum par-
ticles and the requirement that the wave function for bosons
(n) o 1 4) by symmetric under particle exchange. The_ calculation of the
|/ Classical™ ¢ ghe » occupation numbers proceeds exactly as in the case of clas-
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*)

hw = 1; (* hbar*omega

kt=15; (* Boltzmann constant*Temperature *)
n=10000; (* Number of atoms *)
sumlim = 300; (* Number of terms in sum *)

dist[c_] := 1/(c*Exp[hw*m/kt]); (* Boltzmann distribution

= Sum[distic]* (m+2) * (m+1)/2,{m,0,sumlim}]

normsum[ec_] :=
(* Define normalization sum *)

q = FindRoot[normsum(c] == n,{c,0.5}]

(* Find normalization constant *)

{c -> 0.372788}

Table [N[dist[c/.q] *(m+2)*(m+1l)/2],{m,0,sumlim}];

occnum =
(* Calculate occupation numbers

*)

Part[occnum, 1] (* Extract ground-state occupationt*)

2.68249

ListPlot[occenum, PlotRange->{0,300}];
(* Plot occupation numbers

*)
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Fig. 1. Mathematicacode for calculation of occupation numbers of classical particles in an isotropic three-dimensional harmonic oscillator potential.

sical particles, except a different distribution is used. Theresults for the energy level occupation humbers given by the

analog of the Boltzmann distribution for occupation numbersquantum statistics are almost indistinguishable from those

of bosons in single-particle states is the Bose—Einstein disderived for classical particles in E¢p). This is illustrated in

tribution, the similarity of graphs in Fig. 2 and Fig. 4 f&T=25 .

1 The graphs in Figs. 2 and 4 begin to appear different for

(n|)BE=m, (7)  temperatures such th&fT<19.7 w. The results plotted in
Fig. 4 calculated using the Bose—Einstein distribution dis-

whereC’ is normalization constant analogous to the constanplay a sharp rise in the population in the ground state below

C in the classical case. The total occupation number in statetfis temperature. In Fig. 3 the number of atoms in the ground
state of the gas of bosons is plotted versus the temperature of

with an energymf w is then
the gas; this graph shows a very sharp rise belowv
. (m+2)(m+1) _ . .

(N ) BE= o - (8) =20hw compared to the data for classical particles plotted
2(C'e™—-1) in the same figure. The abrupt rise in the number of bosons
The Mathematicacode given in Fig. 1 needs to be changedin the ground state is the signature of Bose—Einstein conden-
only in the single line where the distribution is defined in sation. In the limit of large particle numbers the graph of the
order to redo the calculations for bosons. number of bosons in the ground state acquires a true kink
The energy level occupation numbers that are given byvith a discontinuous derivative at the critical temperature
Eqg. (8) for a sample of 10 000 bosons are plotted for fourT,. It is worth emphasizing that this condensation occurs
temperatures in Fig. 4. For high enough temperatures theven though the particles do not interact, in contrast to the
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Fig. 2. Occupation numbers of energy states for 10 000 classical particles in
an isotropic harmonic oscillator potential at three temperatui€E:

kT = 25 hw: +
kT = 15hw: °
kT = 5hw: °
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Energy (Units: hw)

=25 w, kT=15%w, andkT=5%w.

case of more familiar phase transitions which are due to in-
termolecular forces. Bose—Einstein condensation is entirely a
consequence of the “extra>1 in the denominator of the

Bose—Einstein distribution, Eq7).

V. HEAT CAPACITY OF THE BOSE CONDENSATE

The same program that calculates the occupation number
of the energy levels of a gas can easily calculate the average

thermal energy of the gas,

U=2 J nem= 2,
m=0

m=0

The average energy per particle of a gas 10 000 particles as &

(m+2)(m+1)
2(Ceme—) M

function of temperature is displayed in Fig. 5.
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Fig. 4. Occupation numbers of energy states for 10 000 bosons in an iso-
tropic harmonic oscillator potential fokT=25w, kT=19.6iw, KT
=19.4iw, andkT=18% w. (Note the change of scale on the lowest graph.

The heat capacity of gas is defined as
du

aT (10)

Fig. 3. Occupation number of ground state as a function of temperature for o
10 000 classical particles and 10 000 bosons in an isotropic harmonic oscilHeat capacity is usually measured at constant volume or at

lator potential.
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] ) ) Fig. 6. Heat capacity per particle as a function of temperature for 10 000
Fig. 5. Average energy per particle as a function of temperature for 10 00@osons in an isotropic harmonic oscillator potential.
bosons in an isotropic harmonic oscillator potential.

bosons the consta@’ gets extremely close to 1 as the tem-
concept is really appropriate. For example, the volume occuperature nears the critical temperatu@tandard approxima-
pied by the particles naturally changes as the energy pefon schemes for determining the critical temperature rely on
particle changes, but no work is done by the expansion.settingC’ exactly equal to 1 as is discussed in Appendix B.
Figure 6 shows the heat capacity determined numericallyf the starting value of th&indRoot function is not suffi-
from the data plotted in Fig. 5. The heat capacity per particlgijently close to 1, the root finding algorithm may actually
shows the characteristic “lambda” shape at the transitionump past the root that is close to 1 and find an unphysical
temperature, and approaches the classical valueko&t3 ygjue ofC’ that is less than 1.
higher temperaturegThe translational motion of the par-
ticles contributes B/2 to the heat capacity per particle, and AppENDIX B: CONNECTION TO STANDARD
the potential energy of the harmonic oscillator potential con-yppRrOXIMATIONS
tributes an additional B2.) A more analytical treatment of
the heat capacity in the true thermodynamic limit is given in  In conventional introductions to Bose—Einstein condensa-
Refs. 7 and 8. tion the volume in which the particles are contained is con-
sidered large enough that the energy states are very closely

. spaced, and the sum over all energy states like that irf@xq.
APPENDIX'A: NOTES ON MATHEMATICACODE is converted to an integral. The continuum density of states

While the Mathematicacode of Fig. 1 is conceptually for an isotropic three-dimensional quantum harmonic oscil-
straightforward, a few constants in the code must be chosd@tor is given by

with care. The normalization sum is hominally a sum of an 5
infinite number of terms; in practice the required number of  ¢(¢) ge= 6_3 de (B1)
terms in the normalization suraymlim , will depend on the 2(hw)

temperature, and the number of atoms. The sum must includg,q it seems that the normalization sum should be replaced
all energy levels that have an appreciable occupation numb%ry the integral condition

for the given conditions. The required number can be deter-

mined empirically by trying different limits and examining % €2

graphs like that produced in the last line of the code in Fig. 1. f ey de=2N(fw)3. (B2

The displayed graph shows that the occupation number for 0

levels withE=300%w is very small, and thus the sum with There is a flaw in this argument because this integral condi-

300 terms includes all levels with appreciable occupationtion is only valid for temperatures above a critical tempera-

For higher temperatures the number of terms would have tture. To see this, imagine that the temperature of the system

be increased. With more atoms in the trap, Bose—Einsteirs lowered. As the temperature decreases, so must the con-

condensation occurs at a higher temperature, and thus moseantC’ in order to keep the left side of the equation con-

terms must be used in this cagghe critical temperature stant. Examination of the Bose—Einstein distribution, &,

scales af'? as is discussed in Appendix)B. shows thatC’ must always be greater than 1 if the occupa-
In determining the normalization constai@s(in the case tion numbers are to be positive. Thus, the temperature at

of classical particlesandC’ (in the case of bosop$suse the  which C'=1 is a critical temperature for this integral. The

Mathematicafunction FindRoot  which requires a starting problem is that the ground state with zero energy is com-

value for its root searching algorithm. In the case of classicapletely neglected in the integral of E@2) because the den-

particles this choice is not terribly critical, but in the case ofsity of states factor, Eq(B1), goes to zero ak=0. The
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The critical temperature is thus determined by evaluating (1997

the integral in Eq(B2) whenC’ =1, and solving fofT. This V B_agnato, D.E. Pritcha_rd, and D. Kleppner, “Bose—Einstein condensa-
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critical temperature of 2The m units of energy must be partitioned between the three independent
oscillators. To visualize the problem, represent the units of energy as
kT.=20.3 o, (B5) indistinguishable particles in a row. There ara« 1) spots between the
particles in which to place two “dividers” which partition the energy into

which is very close to the value determined in Sec. IV. three sets. The total number of permutations of the particles and dividers is

(M +2)!. Todetermine the total number of states this must be divided by
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